Comparison of Ant Colony and Differential Evolution Optimization Methods Applied to a Design of Synchronous Reluctance Machine

Mario Klanac, D. Žarko, S. Stipetić
{"title":"Comparison of Ant Colony and Differential Evolution Optimization Methods Applied to a Design of Synchronous Reluctance Machine","authors":"Mario Klanac, D. Žarko, S. Stipetić","doi":"10.1109/EDPE.2019.8883939","DOIUrl":null,"url":null,"abstract":"This paper describes the process of synchronous reluctance motor design optimization on an example of a motor with circular barriers modeled using commercial finite element software Infolytica MagNet combined with two stochastic optimization methods implemented in Matlab environment. The goal is to present a generalized approach to parametrization of motor geometry which can be used for various types of rotor geometries, to demonstrate the modular approach to automated pre-processing and post-processing of the motor model in MagNet software, and to compare the performance of two very robust and powerful stochastic optimization algorithms (Differential Evolution and Ant Colony Optimization).","PeriodicalId":353978,"journal":{"name":"2019 International Conference on Electrical Drives & Power Electronics (EDPE)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Electrical Drives & Power Electronics (EDPE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EDPE.2019.8883939","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper describes the process of synchronous reluctance motor design optimization on an example of a motor with circular barriers modeled using commercial finite element software Infolytica MagNet combined with two stochastic optimization methods implemented in Matlab environment. The goal is to present a generalized approach to parametrization of motor geometry which can be used for various types of rotor geometries, to demonstrate the modular approach to automated pre-processing and post-processing of the motor model in MagNet software, and to compare the performance of two very robust and powerful stochastic optimization algorithms (Differential Evolution and Ant Colony Optimization).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
蚁群与差分进化优化方法在同步磁阻电机设计中的比较
本文利用商业有限元软件Infolytica MagNet,结合两种随机优化方法在Matlab环境下的实现,以具有圆形障壁的同步磁阻电机为例,介绍了同步磁阻电机的优化设计过程。目标是提出一种通用的电机几何参数化方法,该方法可用于各种类型的转子几何形状,以演示磁铁软件中电机模型的自动化预处理和后处理的模块化方法,并比较两种非常强大的随机优化算法(微分进化和蚁群优化)的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automated Preliminary Design of Induction Machines Aided by Artificial Neural Networks Investigation of Induction Machine with Rotor-Bar Faults Comparison of Thermal Properties of the Magnetic Components of Interleaved DC/DC Converters Application of Hybrid Neural Network to Detection of Induction Motor Electrical Faults Design and Functional Demonstration of a 100 A Battery Testing Unit with Minimal Power Supply Load
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1