Tat’y Mwata-Velu, J. Ruiz-Pinales, J. Aviña-Cervantes, J. González-Barbosa, J. Contreras-Hernandez
{"title":"Empirical Mode Decomposition and a Bidirectional LSTM Architecture Used to Decode Individual Finger MI-EEG Signals","authors":"Tat’y Mwata-Velu, J. Ruiz-Pinales, J. Aviña-Cervantes, J. González-Barbosa, J. Contreras-Hernandez","doi":"10.15377/2409-5761.2022.09.3","DOIUrl":null,"url":null,"abstract":"Brain-Computer Interface (BCI) paradigms based on Motor Imagery Electroencephalogram (MI-EEG) signals have been developed because the related signals can be generated voluntarily to control further applications. Researches using strong and stout limbs MI-EEG signals reported performing significant classification rates for BCI applied systems. However, MI-EEG signals produced by imagined movements of small limbs present a real classification challenge to be effectively used in BCI systems. It is due to a reduced signal level and increased noisy distorted effects. This study aims to decode individual right-hand fingers’ imagined movements for BCI applications, using MI-EEG signals from C3, Cz, P3, and Pz channels. For this purpose, the Empirical Mode Decomposition (EMD) preprocesses the non-stationary and non-linear EEG signals to finally use a Bidirectional Long Short-Term Memory (BiLSTM) to classify corresponding feature sequences. An average accuracy of 98.8 % was achieved for ring-finger movements decoding using k-fold cross-validation on a public dataset (Scientific-Data). The obtained results support that the proposed framework can be used for BCI control applications.","PeriodicalId":335387,"journal":{"name":"Journal of Advances in Applied & Computational Mathematics","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advances in Applied & Computational Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15377/2409-5761.2022.09.3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Brain-Computer Interface (BCI) paradigms based on Motor Imagery Electroencephalogram (MI-EEG) signals have been developed because the related signals can be generated voluntarily to control further applications. Researches using strong and stout limbs MI-EEG signals reported performing significant classification rates for BCI applied systems. However, MI-EEG signals produced by imagined movements of small limbs present a real classification challenge to be effectively used in BCI systems. It is due to a reduced signal level and increased noisy distorted effects. This study aims to decode individual right-hand fingers’ imagined movements for BCI applications, using MI-EEG signals from C3, Cz, P3, and Pz channels. For this purpose, the Empirical Mode Decomposition (EMD) preprocesses the non-stationary and non-linear EEG signals to finally use a Bidirectional Long Short-Term Memory (BiLSTM) to classify corresponding feature sequences. An average accuracy of 98.8 % was achieved for ring-finger movements decoding using k-fold cross-validation on a public dataset (Scientific-Data). The obtained results support that the proposed framework can be used for BCI control applications.