{"title":"Biometric Identity Verification Using Intra-Body Propagation Signal","authors":"I. Nakanishi, Y. Yorikane, Y. Itoh, Y. Fukui","doi":"10.1109/BCC.2007.4430545","DOIUrl":null,"url":null,"abstract":"We propose to utilize an electromagnetic wave through a human body as biometrics. The electromagnetic wave (intra-body propagation signal) is generated at a relatively shallow depth in the human body through a pair of electrodes pasted on the human skin. The biological tissue of each individual human being is different from that of others, so that the transfer characteristic of the intra-body propagation signal is also different mutually. By using such a difference, it is expected to authenticate personal identification. In addition, liveness detection can be realized simultaneously using the intra-body propagation signal. It is effective on the detection of spoofing using artificial bodies. In this paper, we examine the individual feature in the intra-body propagation signal based on the spectrum analysis. As a result, the verification rate of 58% is obtained using the similarity of the power spectrum especially in the 30-60 MHz sub-band.","PeriodicalId":389417,"journal":{"name":"2007 Biometrics Symposium","volume":"150 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 Biometrics Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BCC.2007.4430545","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
We propose to utilize an electromagnetic wave through a human body as biometrics. The electromagnetic wave (intra-body propagation signal) is generated at a relatively shallow depth in the human body through a pair of electrodes pasted on the human skin. The biological tissue of each individual human being is different from that of others, so that the transfer characteristic of the intra-body propagation signal is also different mutually. By using such a difference, it is expected to authenticate personal identification. In addition, liveness detection can be realized simultaneously using the intra-body propagation signal. It is effective on the detection of spoofing using artificial bodies. In this paper, we examine the individual feature in the intra-body propagation signal based on the spectrum analysis. As a result, the verification rate of 58% is obtained using the similarity of the power spectrum especially in the 30-60 MHz sub-band.