Cross Spectral Periocular Matching using ResNet Features

Kevin Hernandez-Diaz, F. Alonso-Fernandez, J. Bigün
{"title":"Cross Spectral Periocular Matching using ResNet Features","authors":"Kevin Hernandez-Diaz, F. Alonso-Fernandez, J. Bigün","doi":"10.1109/ICB45273.2019.8987303","DOIUrl":null,"url":null,"abstract":"Periocular recognition has gained attention in the last years thanks to its high discrimination capabilities in less constraint scenarios than other ocular modalities. In this paper we propose a method for periocular verification under different light spectra using CNN features with the particularity that the network has not been trained for this purpose. We use a ResNet-101 pretrained model for the ImageNet Large Scale Visual Recognition Challenge to extract features from the IIITD Multispectral Periocular Database. At each layer the features are compared using χ2 distance and cosine similitude to carry on verification between images, achieving an improvement in the EER and accuracy at 1% FAR of up to 63.13% and 24.79% in comparison to previous works that employ the same database. In addition to this, we train a neural network to match the best CNN feature layer vector from each spectrum. With this procedure, we achieve improvements of up to 65% (EER) and 87% (accuracy at 1% FAR) in cross-spectral verification with respect to previous studies.","PeriodicalId":430846,"journal":{"name":"2019 International Conference on Biometrics (ICB)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Biometrics (ICB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICB45273.2019.8987303","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

Periocular recognition has gained attention in the last years thanks to its high discrimination capabilities in less constraint scenarios than other ocular modalities. In this paper we propose a method for periocular verification under different light spectra using CNN features with the particularity that the network has not been trained for this purpose. We use a ResNet-101 pretrained model for the ImageNet Large Scale Visual Recognition Challenge to extract features from the IIITD Multispectral Periocular Database. At each layer the features are compared using χ2 distance and cosine similitude to carry on verification between images, achieving an improvement in the EER and accuracy at 1% FAR of up to 63.13% and 24.79% in comparison to previous works that employ the same database. In addition to this, we train a neural network to match the best CNN feature layer vector from each spectrum. With this procedure, we achieve improvements of up to 65% (EER) and 87% (accuracy at 1% FAR) in cross-spectral verification with respect to previous studies.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于ResNet特征的交叉光谱眼周匹配
在过去的几年里,由于其在较少约束的情况下比其他眼部模式具有较高的识别能力,眼周识别已经引起了人们的关注。在本文中,我们提出了一种利用CNN特征在不同光谱下进行眼周验证的方法,其特点是该网络尚未为此进行训练。在ImageNet大规模视觉识别挑战中,我们使用ResNet-101预训练模型从IIITD多光谱眼周数据库中提取特征。在每一层,使用χ2距离和余弦相似度对特征进行比较,在图像之间进行验证,与使用相同数据库的先前工作相比,在1% FAR下的EER和准确率分别提高了63.13%和24.79%。除此之外,我们训练了一个神经网络来匹配来自每个频谱的最佳CNN特征层向量。与之前的研究相比,我们在交叉光谱验证中实现了高达65% (EER)和87% (1% FAR下的精度)的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
PPG2Live: Using dual PPG for active authentication and liveness detection A New Approach for EEG-Based Biometric Authentication Using Auditory Stimulation A novel scheme to address the fusion uncertainty in multi-modal continuous authentication schemes on mobile devices Sclera Segmentation Benchmarking Competition in Cross-resolution Environment Fingerprint Presentation Attack Detection utilizing Time-Series, Color Fingerprint Captures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1