{"title":"Statistical approach to ML decoding of linear block codes on symmetric channels","authors":"H. Vikalo, B. Hassibi","doi":"10.1109/ISIT.2004.1365558","DOIUrl":null,"url":null,"abstract":"Maximum-likelihood (ML) decoding of linear block codes on a symmetric channel is studied. Exact ML decoding is known to be computationally difficult. We propose an algorithm that finds the exact solution to the ML decoding problem by performing a depth-first search on a tree. The tree is designed from the code generator matrix and pruned based on the statistics of the channel noise. The complexity of the algorithm is a random variable. We characterize the complexity by means of its first moment, which for binary symmetric channels we find in closed-form. The obtained results indicate that the expected complexity of the algorithm is low over a wide range of system parameters.","PeriodicalId":269907,"journal":{"name":"International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings.","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2004.1365558","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
Maximum-likelihood (ML) decoding of linear block codes on a symmetric channel is studied. Exact ML decoding is known to be computationally difficult. We propose an algorithm that finds the exact solution to the ML decoding problem by performing a depth-first search on a tree. The tree is designed from the code generator matrix and pruned based on the statistics of the channel noise. The complexity of the algorithm is a random variable. We characterize the complexity by means of its first moment, which for binary symmetric channels we find in closed-form. The obtained results indicate that the expected complexity of the algorithm is low over a wide range of system parameters.