Correntropy induced metric based graph regularized non-negative matrix factorization

Bin Mao, Naiyang Guan, D. Tao, Xuhui Huang, Zhigang Luo
{"title":"Correntropy induced metric based graph regularized non-negative matrix factorization","authors":"Bin Mao, Naiyang Guan, D. Tao, Xuhui Huang, Zhigang Luo","doi":"10.1109/SPAC.2014.6982679","DOIUrl":null,"url":null,"abstract":"Non-negative matrix factorization (NMF) is an efficient dimension reduction method and plays an important role in many pattern recognition and computer vision tasks. However, conventional NMF methods are not robust since the objective functions are sensitive to outliers and do not consider the geometric structure in datasets. In this paper, we proposed a correntropy graph regularized NMF (CGNMF) to overcome the aforementioned problems. CGNMF maximizes the correntropy between data matrix and its reconstruction to filter out the noises of large magnitudes, and expects the coefficients to preserve the intrinsic geometric structure of data. We also proposed a modified version of our CGNMF which construct the adjacent graph by using sparse representation to enhance its reliability. Experimental results on popular image datasets confirm the effectiveness of CGNMF.","PeriodicalId":326246,"journal":{"name":"Proceedings 2014 IEEE International Conference on Security, Pattern Analysis, and Cybernetics (SPAC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 2014 IEEE International Conference on Security, Pattern Analysis, and Cybernetics (SPAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPAC.2014.6982679","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

Abstract

Non-negative matrix factorization (NMF) is an efficient dimension reduction method and plays an important role in many pattern recognition and computer vision tasks. However, conventional NMF methods are not robust since the objective functions are sensitive to outliers and do not consider the geometric structure in datasets. In this paper, we proposed a correntropy graph regularized NMF (CGNMF) to overcome the aforementioned problems. CGNMF maximizes the correntropy between data matrix and its reconstruction to filter out the noises of large magnitudes, and expects the coefficients to preserve the intrinsic geometric structure of data. We also proposed a modified version of our CGNMF which construct the adjacent graph by using sparse representation to enhance its reliability. Experimental results on popular image datasets confirm the effectiveness of CGNMF.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
相关熵诱导的基于度量的图正则化非负矩阵分解
非负矩阵分解(NMF)是一种高效的降维方法,在许多模式识别和计算机视觉任务中发挥着重要作用。然而,传统的NMF方法由于目标函数对异常值敏感,并且没有考虑数据集的几何结构,因此鲁棒性不强。本文提出了一种相关图正则化NMF (CGNMF)来克服上述问题。CGNMF通过最大化数据矩阵与其重构之间的熵值来滤除大幅度的噪声,并期望系数保持数据固有的几何结构。我们还提出了一种改进版本的CGNMF,通过使用稀疏表示来构造相邻图,以提高其可靠性。在常用图像数据集上的实验结果证实了CGNMF的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A new GPR image de-nosing method based on BEMD Design and implementation of one vertical video search engine Multi-scale sparse denoising model based on non-separable wavelet Dollar bill denomination recognition algorithm based on local texture feature Class specific dictionary learning for face recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1