Statistical analysis on long-term change of jitter component on continuous speech signal*

Cheolwoo Jo
{"title":"Statistical analysis on long-term change of jitter component on\n continuous speech signal*","authors":"Cheolwoo Jo","doi":"10.13064/KSSS.2020.12.4.073","DOIUrl":null,"url":null,"abstract":"In this study, a method for measuring the jitter component in continuous speech is presented. In the conventional jitter measurement method, pitch variabilities are commonly measured from the sustained vowels. In the case of continuous speech, such as a spoken sentence, distortion occurs with the existing measurement method owing to the influence of prosody information according to the sentence. Therefore, we propose a method to reduce the pitch fluctuations of prosody information in continuous speech. To remove this pitch fluctuation component, a curve representing the fluctuation is obtained via polynomial interpolation for the pitch track in the analysis interval, and the shift is removed according to the curve. Subsequently, the variability of the pitch frequency is obtained by a method of measuring jitter from the trajectory of the pitch from which the shift is removed. To measure the effects of the proposed method, parameter values before and after the operations are compared using samples from the Kay Pentax MEEI database. The statistical analysis of the experimental results showed that jitter components from the continuous speech can be measured effectively by proposed method and the values are comparable to the parameters of sustained vowel from the same speaker.","PeriodicalId":255285,"journal":{"name":"Phonetics and Speech Sciences","volume":"124 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Phonetics and Speech Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13064/KSSS.2020.12.4.073","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, a method for measuring the jitter component in continuous speech is presented. In the conventional jitter measurement method, pitch variabilities are commonly measured from the sustained vowels. In the case of continuous speech, such as a spoken sentence, distortion occurs with the existing measurement method owing to the influence of prosody information according to the sentence. Therefore, we propose a method to reduce the pitch fluctuations of prosody information in continuous speech. To remove this pitch fluctuation component, a curve representing the fluctuation is obtained via polynomial interpolation for the pitch track in the analysis interval, and the shift is removed according to the curve. Subsequently, the variability of the pitch frequency is obtained by a method of measuring jitter from the trajectory of the pitch from which the shift is removed. To measure the effects of the proposed method, parameter values before and after the operations are compared using samples from the Kay Pentax MEEI database. The statistical analysis of the experimental results showed that jitter components from the continuous speech can be measured effectively by proposed method and the values are comparable to the parameters of sustained vowel from the same speaker.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
连续语音信号抖动分量长期变化的统计分析*
本文提出了一种测量连续语音中抖动分量的方法。在传统的抖动测量方法中,通常从持续元音中测量音高变化。在连续语音的情况下,例如一个口语句子,现有的测量方法会根据句子受到韵律信息的影响而产生失真。因此,我们提出了一种降低连续语音中韵律信息的音高波动的方法。为了去除这一基音波动分量,对分析区间的基音轨迹进行多项式插值得到一条代表波动的曲线,并根据该曲线去除偏移。随后,基音频率的可变性是通过测量从基音的轨迹抖动的方法得到的,从移位被移除。为了测量所提出方法的效果,使用Kay Pentax MEEI数据库中的样本比较了操作前后的参数值。实验结果的统计分析表明,该方法可以有效地测量连续语音中的抖动分量,且测量值与同一说话人的持续元音参数相当。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Tube phonation in water for patients with hyperfunctional voice disorders: The effect of tube diameter and water immersion depth on bubble height and maximum phonation time* Digital enhancement of pronunciation assessment: Automated speech recognition and human raters* Patterns of categorical perception and response times in the matrix scope interpretation of embedded wh-phrases in Gyeongsang Korean Knowledge-driven speech features for detection of Korean-speaking children with autism spectrum disorder* Transition of vowel harmony in Korean verbal conjugation: Patterns of variation in a spoken corpus
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1