Canonical analysis basedonmutual information

A. Nielsen, Jacob S. Vestergaard
{"title":"Canonical analysis basedonmutual information","authors":"A. Nielsen, Jacob S. Vestergaard","doi":"10.1109/IGARSS.2015.7325954","DOIUrl":null,"url":null,"abstract":"Canonical correlation analysis (CCA) is an established multi-variate statistical method for finding similarities between linear combinations of (normally two) sets of multivariate observations. In this contribution we replace (linear) correlation as the measure of association between the linear combinations with the information theoretical measure mutual information (MI). We term this type of analysis canonical information analysis (CIA). MI allows for the actual joint distribution of the variables involved and not just second order statistics. While CCA is ideal for Gaussian data, CIA facilitates analysis of variables with different genesis and therefore different statistical distributions and different modalities. As a proof of concept we give a toy example. We also give an example with one (weather radar based) variable in the one set and eight spectral bands of optical satellite data in the other set.","PeriodicalId":125717,"journal":{"name":"2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS.2015.7325954","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Canonical correlation analysis (CCA) is an established multi-variate statistical method for finding similarities between linear combinations of (normally two) sets of multivariate observations. In this contribution we replace (linear) correlation as the measure of association between the linear combinations with the information theoretical measure mutual information (MI). We term this type of analysis canonical information analysis (CIA). MI allows for the actual joint distribution of the variables involved and not just second order statistics. While CCA is ideal for Gaussian data, CIA facilitates analysis of variables with different genesis and therefore different statistical distributions and different modalities. As a proof of concept we give a toy example. We also give an example with one (weather radar based) variable in the one set and eight spectral bands of optical satellite data in the other set.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于互信息的典型分析
典型相关分析(CCA)是一种建立的多变量统计方法,用于寻找(通常是两组)多变量观测值的线性组合之间的相似性。在这个贡献中,我们用信息理论度量互信息(MI)代替(线性)相关性作为线性组合之间关联的度量。我们将这种类型的分析称为规范信息分析(CIA)。MI允许所涉及变量的实际联合分布,而不仅仅是二阶统计量。虽然CCA是高斯数据的理想选择,但CIA有助于分析具有不同起源的变量,因此可以分析不同的统计分布和不同的模态。作为概念的证明,我们给出一个玩具的例子。我们还给出了一个例子,其中一组中有一个(基于气象雷达的)变量,另一组中有光学卫星数据的八个光谱波段。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Interferometric and polarimetric methods to determine SWE, fresh snow depth and the anisotropy of dry snow Usefulness assessment of polarimetric parameters for line extraction from agricultural areas DEM and DHM reconstruction in tropical forests: Tomographic results at P-band with three flight tracks Nationwide ground deformation monitoring by persistent scatterer interferometry MICAP (Microwave imager combined active and passive): A new instrument for Chinese ocean salinity satellite
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1