Image-based fish recognition

T. Saitoh, Toshiki Shibata, Tsubasa Miyazono
{"title":"Image-based fish recognition","authors":"T. Saitoh, Toshiki Shibata, Tsubasa Miyazono","doi":"10.1109/SOCPAR.2015.7492817","DOIUrl":null,"url":null,"abstract":"We are studying image-based fish identification. Most of traditional approaches used a fish image which was easy to extract a fish region with a white background or uniform background for automatic processing. This research adapted an approach to give several points by manual operation by the user. The proposed approach is able to accept the fish image in the complicated background taken on the rocky place. Furthermore, to investigate the efficient features for fish recognition, we defined various features, such as, shape features, local features, and six kinds of texture features. We collected 129 species under various photography conditions, and the proposed method was carried out to it. As the results, it was confirmed that a combination features with geometric features and BoVW models obtained the highest recognition accuracy.","PeriodicalId":409493,"journal":{"name":"2015 7th International Conference of Soft Computing and Pattern Recognition (SoCPaR)","volume":"126 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 7th International Conference of Soft Computing and Pattern Recognition (SoCPaR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SOCPAR.2015.7492817","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

We are studying image-based fish identification. Most of traditional approaches used a fish image which was easy to extract a fish region with a white background or uniform background for automatic processing. This research adapted an approach to give several points by manual operation by the user. The proposed approach is able to accept the fish image in the complicated background taken on the rocky place. Furthermore, to investigate the efficient features for fish recognition, we defined various features, such as, shape features, local features, and six kinds of texture features. We collected 129 species under various photography conditions, and the proposed method was carried out to it. As the results, it was confirmed that a combination features with geometric features and BoVW models obtained the highest recognition accuracy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于图像的鱼类识别
我们正在研究基于图像的鱼类识别。传统方法大多采用鱼的图像,容易提取出具有白色背景或均匀背景的鱼区进行自动处理。这项研究采用了一种由用户手动操作给出几个点的方法。该方法能够在复杂的背景下接受在岩石上拍摄的鱼类图像。此外,为了研究鱼类识别的有效特征,我们定义了各种特征,如形状特征、局部特征和六种纹理特征。我们在不同的摄影条件下采集了129种,并对所提出的方法进行了实验。结果表明,结合几何特征和BoVW模型的特征识别精度最高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An effective AIS-based model for frequency assignment in mobile communication An innovative approach for feature selection based on chicken swarm optimization Vertical collaborative clustering using generative topographic maps Solving the obstacle neutralization problem using swarm intelligence algorithms Optimal partial filters of EEG signals for shared control of vehicle
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1