Variational Bayesian Inference Based Channel Estimation for OTFS System with LSM Prior

Qiankun Wang, M. Lei, Ming-Min Zhao, Min-Jian Zhao
{"title":"Variational Bayesian Inference Based Channel Estimation for OTFS System with LSM Prior","authors":"Qiankun Wang, M. Lei, Ming-Min Zhao, Min-Jian Zhao","doi":"10.1109/ISWCS56560.2022.9940257","DOIUrl":null,"url":null,"abstract":"Orthogonal time frequency space (OTFS) is a new emerging modulation scheme that performs better than orthogonal frequency division multiplexing (OFDM) in high mobility scenarios. In this paper, we consider the delay-Doppler (DD) channel estimation problem in an OTFS system. By exploiting the inherent sparse nature of the DD channel, the channel estimation problem is modeled as a sparse signal recovery problem. Next, we build a two-layer graphical model with the Laplacian scale mixture (LSM) prior utilized to model the sparse channel. Then, a variational Bayesian inference (VBI) based algorithm is proposed to solve this problem. Simulation results are presented to show that the proposed algorithm can achieve better performance than other existing channel estimation algorithms.","PeriodicalId":141258,"journal":{"name":"2022 International Symposium on Wireless Communication Systems (ISWCS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Symposium on Wireless Communication Systems (ISWCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISWCS56560.2022.9940257","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Orthogonal time frequency space (OTFS) is a new emerging modulation scheme that performs better than orthogonal frequency division multiplexing (OFDM) in high mobility scenarios. In this paper, we consider the delay-Doppler (DD) channel estimation problem in an OTFS system. By exploiting the inherent sparse nature of the DD channel, the channel estimation problem is modeled as a sparse signal recovery problem. Next, we build a two-layer graphical model with the Laplacian scale mixture (LSM) prior utilized to model the sparse channel. Then, a variational Bayesian inference (VBI) based algorithm is proposed to solve this problem. Simulation results are presented to show that the proposed algorithm can achieve better performance than other existing channel estimation algorithms.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于变分贝叶斯推理的LSM先验OTFS系统信道估计
正交时频空间(OTFS)是一种新兴的调制方案,在高移动场景下具有比正交频分复用(OFDM)更好的性能。研究了OTFS系统中时延-多普勒(DD)信道估计问题。利用DD信道固有的稀疏特性,将信道估计问题建模为一个稀疏信号恢复问题。接下来,我们利用先验的拉普拉斯尺度混合(LSM)模型建立了一个两层图形模型。然后,提出了一种基于变分贝叶斯推理(VBI)的算法来解决这一问题。仿真结果表明,该算法比现有的信道估计算法具有更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Cluster Precoders for Cell-Free MU-MIMO Systems Energy Consumption Minimization for NOMA-Assisted Mobile Edge Computing Multi-User Symbol-Level Precoding for Downlink Reconfigurable MIMO Communication Systems Deep Learning based Channel Prediction for OFDM Systems under Double-Selective Fading Channels Low Computational Complexity Algorithm for Hand Gesture Recognition using mmWave RADAR
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1