Contemporary trends in privacy preserving collaborative data mining- A survey

A. Shah, R. Gulati
{"title":"Contemporary trends in privacy preserving collaborative data mining- A survey","authors":"A. Shah, R. Gulati","doi":"10.1109/EESCO.2015.7254044","DOIUrl":null,"url":null,"abstract":"Growing concerns amongst the competitors for maintaining the privacy of their customer's information has increased in recent years. Multiple parties desire to collaborate to conduct data mining without breaching privacy of each contributing party. Organizations, both public and private, publish sensitive micro data for research and/or trend analysis. The main confront for developing a secured framework is a consideration for privacy as well as efficiency and complications amongst the collaborating parties for generating standardization. The paper surveys various techniques applied for Privacy Preserving Collaborative Data Mining and summarizes the demerits of the same.","PeriodicalId":305584,"journal":{"name":"2015 International Conference on Electrical, Electronics, Signals, Communication and Optimization (EESCO)","volume":"131 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Electrical, Electronics, Signals, Communication and Optimization (EESCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EESCO.2015.7254044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Growing concerns amongst the competitors for maintaining the privacy of their customer's information has increased in recent years. Multiple parties desire to collaborate to conduct data mining without breaching privacy of each contributing party. Organizations, both public and private, publish sensitive micro data for research and/or trend analysis. The main confront for developing a secured framework is a consideration for privacy as well as efficiency and complications amongst the collaborating parties for generating standardization. The paper surveys various techniques applied for Privacy Preserving Collaborative Data Mining and summarizes the demerits of the same.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
保护隐私的协作数据挖掘的当代趋势——调查
近年来,竞争对手越来越关注维护客户信息隐私的问题。多方希望在不侵犯每一方隐私的情况下合作进行数据挖掘。公共和私人组织都会发布敏感的微观数据,用于研究和/或趋势分析。开发安全框架的主要问题是要考虑隐私、效率和协作各方之间的复杂性,以生成标准化。本文综述了用于保护隐私的协作数据挖掘的各种技术,并总结了它们的缺点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
IEEE copyright and consent form IEEE copyright and consent form Neuro-Genetic and CCM based biometrical authentication through side-view of human-face A feasibility analysis of decentralized solar power using RETScreen in Odisha Scanning tool for the detection of images embedded with malicious programs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1