On Development of a Generalized Visual Stochastic Optimizer

M. K. Pakhira, Prasenjit Das
{"title":"On Development of a Generalized Visual Stochastic Optimizer","authors":"M. K. Pakhira, Prasenjit Das","doi":"10.1109/ICIT.2008.69","DOIUrl":null,"url":null,"abstract":"Visual optimization is a very interesting topic to the application users for many purposes. It enables the user with an interactive platform where, by varying different parameter settings, one can customize a solution. Several attempts of developing generalized evolutionary optimizers are found in literature. In this paper, we have tried to develop a generalized visual platform for stochastic optimization algorithms that encompass both single objective and multi objective problems.","PeriodicalId":184201,"journal":{"name":"2008 International Conference on Information Technology","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 International Conference on Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIT.2008.69","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Visual optimization is a very interesting topic to the application users for many purposes. It enables the user with an interactive platform where, by varying different parameter settings, one can customize a solution. Several attempts of developing generalized evolutionary optimizers are found in literature. In this paper, we have tried to develop a generalized visual platform for stochastic optimization algorithms that encompass both single objective and multi objective problems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
广义视觉随机优化器的开发
对于许多应用程序用户来说,视觉优化是一个非常有趣的话题。它为用户提供了一个交互式平台,通过改变不同的参数设置,用户可以自定义解决方案。在文献中发现了几种开发广义进化优化器的尝试。在本文中,我们试图为随机优化算法开发一个通用的可视化平台,包括单目标和多目标问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Overheads and Mean Route Failure Time of a Hybrid Protocol for Node-Disjoint Multipath Routing in Mobile Ad Hoc Networks Integrated Genomic Island Prediction Tool (IGIPT) Assignment of Cells to Switches in a Cellular Mobile Environment Using Swarm Intelligence Prediction of Protein Functional Sites Using Novel String Kernels Pairwise DNA Alignment with Sequence Specific Transition-Transversion Ratio Using Multiple Parameter Sets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1