GPU-Accelerated Nick Local Image Thresholding Algorithm

M. Najafi, Anirudh Murali, D. Lilja, J. Sartori
{"title":"GPU-Accelerated Nick Local Image Thresholding Algorithm","authors":"M. Najafi, Anirudh Murali, D. Lilja, J. Sartori","doi":"10.1109/ICPADS.2015.78","DOIUrl":null,"url":null,"abstract":"Binarization plays an important role in document image processing, particularly in degraded document images. Among all local adaptive image thresholding algorithms, the Nick method has shown excellent binarization performance for degraded document images. However, local image thresholding algorithms, including the Nick method, are computationally intensive, requiring significant time to process input images. In this paper, we propose three CUDA GPU parallel implementations of the Nick local image thresholding algorithm for faster binarization of large images. Our experimental results show that the GPU-accelerated implementations of the Nick method can achieve up to 150x performance speedup on a GeForce GTX 480 compared to its optimized sequential implementation.","PeriodicalId":231517,"journal":{"name":"2015 IEEE 21st International Conference on Parallel and Distributed Systems (ICPADS)","volume":"459 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 21st International Conference on Parallel and Distributed Systems (ICPADS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPADS.2015.78","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Binarization plays an important role in document image processing, particularly in degraded document images. Among all local adaptive image thresholding algorithms, the Nick method has shown excellent binarization performance for degraded document images. However, local image thresholding algorithms, including the Nick method, are computationally intensive, requiring significant time to process input images. In this paper, we propose three CUDA GPU parallel implementations of the Nick local image thresholding algorithm for faster binarization of large images. Our experimental results show that the GPU-accelerated implementations of the Nick method can achieve up to 150x performance speedup on a GeForce GTX 480 compared to its optimized sequential implementation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
gpu加速Nick局部图像阈值算法
二值化在文档图像处理中起着重要的作用,特别是在退化的文档图像中。在所有的局部自适应图像阈值分割算法中,Nick方法对退化的文档图像表现出了优异的二值化性能。然而,局部图像阈值分割算法,包括Nick方法,是计算密集型的,需要大量的时间来处理输入图像。在本文中,我们提出了三种CUDA GPU并行实现尼克局部图像阈值算法,以更快地对大图像进行二值化。我们的实验结果表明,与优化后的顺序实现相比,Nick方法的gpu加速实现在GeForce GTX 480上可以实现高达150倍的性能加速。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Power Capping: What Works, What Does Not Resource Provision for Batch and Interactive Workloads in Data Centers Multi-objective Optimization Algorithm Based on BBO for Virtual Machine Consolidation Problem A Service-Oriented Mobile Cloud Middleware Framework for Provisioning Mobile Sensing as a Service High-Performance Parallel Location-Aware Algorithms for Approximate String Matching on GPUs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1