{"title":"Error detection of grapheme-to-phoneme conversion in text-to-speech synthesis using speech signal and lexical context","authors":"Kevin Vythelingum, Y. Estève, O. Rosec","doi":"10.1109/ASRU.2017.8269004","DOIUrl":null,"url":null,"abstract":"In unit selection text-to-speech synthesis, voice creation involved a phonemic transcription of read speech. This is produced by an automatic grapheme-to-phoneme conversion of the text read, followed by a manual correction. Although grapheme-to-phoneme conversion makes few errors, the manual correction is time consuming as every generated phoneme should be checked. We propose a method to automatically detect grapheme-to-phoneme conversion errors by comparing contrastives phonemisation hypothesis. A lattice-based forced alignment system is implemented, allowing for signal-dependent phonemisation. We implement also a sequence-to-sequence neural network model to obtain a context-dependent grapheme-to-phoneme conversion. On a French dataset, we show that we can detect to 86.3% of the errors made by a commercial grapheme-to-phoneme system. Moreover, the amount of data annotated as erroneous is kept under 10% of the total evaluation data. The time spent for phoneme manual checking can thus been drastically reduced without decreasing significantly the phonemic transcription quality.","PeriodicalId":290868,"journal":{"name":"2017 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASRU.2017.8269004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
In unit selection text-to-speech synthesis, voice creation involved a phonemic transcription of read speech. This is produced by an automatic grapheme-to-phoneme conversion of the text read, followed by a manual correction. Although grapheme-to-phoneme conversion makes few errors, the manual correction is time consuming as every generated phoneme should be checked. We propose a method to automatically detect grapheme-to-phoneme conversion errors by comparing contrastives phonemisation hypothesis. A lattice-based forced alignment system is implemented, allowing for signal-dependent phonemisation. We implement also a sequence-to-sequence neural network model to obtain a context-dependent grapheme-to-phoneme conversion. On a French dataset, we show that we can detect to 86.3% of the errors made by a commercial grapheme-to-phoneme system. Moreover, the amount of data annotated as erroneous is kept under 10% of the total evaluation data. The time spent for phoneme manual checking can thus been drastically reduced without decreasing significantly the phonemic transcription quality.