{"title":"SHORT-TERM WIND SPEED FORECASTING USING DEEP VARIATIONAL LSTM","authors":"Navid Atashfaraz","doi":"10.32010/26166127.2022.5.2.254.272","DOIUrl":null,"url":null,"abstract":"Wind speed and power at wind power stations affect the efficiency of a wind farm, so accurate wind forecasting, a nonlinear signal with high fluctuations, increases security and better efficiency than wind power. We are looking for wind speed for a wind farm in Iran. In this research, a combined neural network created from variational autoencoder (VAE), long-term, short-term memory (LSTM), and multilayer perceptron (MLP) for dimension Reduction and encoding is proposed for predicting short-term wind speeds. The data used in this research is related to the statistics of 10 minutes of wind speed in 10- meter, 30-meter, and 40-meter wind turbines, the standard deviation of wind speed, air temperature, and humidity. To compare the proposed model (V- LSTM-MLP), we implemented three deep neural network models, including Stacked Auto-Encoder (SAE), recurrent neural networks (Regular LSTM), and hybrid model Encoder-Decoder recurrent network (LSTM-Encoder-MLP) presented on this dataset. According to the RMSE statistical index, the proposed model is worth 0.1127 for a short time and performs better than other types on this dataset.","PeriodicalId":275688,"journal":{"name":"Azerbaijan Journal of High Performance Computing","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Azerbaijan Journal of High Performance Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32010/26166127.2022.5.2.254.272","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Wind speed and power at wind power stations affect the efficiency of a wind farm, so accurate wind forecasting, a nonlinear signal with high fluctuations, increases security and better efficiency than wind power. We are looking for wind speed for a wind farm in Iran. In this research, a combined neural network created from variational autoencoder (VAE), long-term, short-term memory (LSTM), and multilayer perceptron (MLP) for dimension Reduction and encoding is proposed for predicting short-term wind speeds. The data used in this research is related to the statistics of 10 minutes of wind speed in 10- meter, 30-meter, and 40-meter wind turbines, the standard deviation of wind speed, air temperature, and humidity. To compare the proposed model (V- LSTM-MLP), we implemented three deep neural network models, including Stacked Auto-Encoder (SAE), recurrent neural networks (Regular LSTM), and hybrid model Encoder-Decoder recurrent network (LSTM-Encoder-MLP) presented on this dataset. According to the RMSE statistical index, the proposed model is worth 0.1127 for a short time and performs better than other types on this dataset.