A random forest model for estimating Canopy Chlorophyll Content in rice using hyperspectral measurements

Xuqing Li, Xiangnan Liu, Zhihong Du, Cuicui Wang
{"title":"A random forest model for estimating Canopy Chlorophyll Content in rice using hyperspectral measurements","authors":"Xuqing Li, Xiangnan Liu, Zhihong Du, Cuicui Wang","doi":"10.1109/FSKD.2013.6816256","DOIUrl":null,"url":null,"abstract":"Accurate estimation of the canopy chlorophyll content of a crop is essential for crop production. Ground-based hyperspectral datasets were obtained under a wide range of plant and environmental conditions in Jilin using Analytical Spectral Devices(ASD) spectroradiometers, and canopy chlorophyll content in canopy were measured by Soil and Plant Analyzer Development(SPAD)-502. The objective of this study is to determine the most suitable input variables to estimate the canopy chlorophyll content by Random Forest model. On the basis of a comprehensive analysis of the spectral data, the RF model is explored to provide an accurate and robust assessment of Canopy Chlorophyll Content(CCC). The correlation coefficient (R2) of the second RF model between the measured chlorophyll content and the predicated chlorophyll content is 0.82, and the root mean square error (RMSE) is 12.5738, which is better than the first RF model and the other indexes.","PeriodicalId":368964,"journal":{"name":"2013 10th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD)","volume":"171 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 10th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FSKD.2013.6816256","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Accurate estimation of the canopy chlorophyll content of a crop is essential for crop production. Ground-based hyperspectral datasets were obtained under a wide range of plant and environmental conditions in Jilin using Analytical Spectral Devices(ASD) spectroradiometers, and canopy chlorophyll content in canopy were measured by Soil and Plant Analyzer Development(SPAD)-502. The objective of this study is to determine the most suitable input variables to estimate the canopy chlorophyll content by Random Forest model. On the basis of a comprehensive analysis of the spectral data, the RF model is explored to provide an accurate and robust assessment of Canopy Chlorophyll Content(CCC). The correlation coefficient (R2) of the second RF model between the measured chlorophyll content and the predicated chlorophyll content is 0.82, and the root mean square error (RMSE) is 12.5738, which is better than the first RF model and the other indexes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用高光谱测量估算水稻冠层叶绿素含量的随机森林模型
准确估算作物冠层叶绿素含量对作物生产至关重要。利用分析光谱装置(ASD)光谱辐射计获取了吉林省不同植物和环境条件下的地面高光谱数据,利用SPAD -502测量了林冠中叶绿素含量。本研究的目的是确定最适合随机森林模型估算冠层叶绿素含量的输入变量。在对光谱数据进行综合分析的基础上,探讨了利用射频模型对植被冠层叶绿素含量(CCC)进行准确、可靠评估的方法。实测叶绿素含量与预测叶绿素含量的相关系数(R2)为0.82,均方根误差(RMSE)为12.5738,优于第一个RF模型和其他指标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Unsupervised clustering with the Octave Fuzzy Logic Toolkit Application of adaptive neuro-fuzzy inference system for physical habitat simulation Fuzzy equivalence relation clustering with transitive closure, transitive opening and the optimal transitive approximation A local domain adaptation feature extraction method A real-time algorithm for fixed-length short data compression
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1