V. Zheng, M. Sha, Yuchen Li, Hongxia Yang, Yuan Fang, Zhenjie Zhang, K. Tan, K. Chang
{"title":"Heterogeneous Embedding Propagation for Large-Scale E-Commerce User Alignment","authors":"V. Zheng, M. Sha, Yuchen Li, Hongxia Yang, Yuan Fang, Zhenjie Zhang, K. Tan, K. Chang","doi":"10.1109/ICDM.2018.00198","DOIUrl":null,"url":null,"abstract":"We study the important problem of user alignment in e-commerce: to predict whether two online user identities that access an e-commerce site from different devices belong to one real-world person. As input, we have a set of user activity logs from Taobao and some labeled user identity linkages. User activity logs can be modeled using a heterogeneous interaction graph (HIG), and subsequently the user alignment task can be formulated as a semi-supervised HIG embedding problem. HIG embedding is challenging for two reasons: its heterogeneous nature and the presence of edge features. To address the challenges, we propose a novel Heterogeneous Embedding Propagation (HEP) model. The core idea is to iteratively reconstruct a node's embedding from its heterogeneous neighbors in a weighted manner, and meanwhile propagate its embedding updates from reconstruction loss and/or classification loss to its neighbors. We conduct extensive experiments on large-scale datasets from Taobao, demonstrating that HEP significantly outperforms state-of-the-art baselines often by more than 10% in F-scores.","PeriodicalId":286444,"journal":{"name":"2018 IEEE International Conference on Data Mining (ICDM)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Data Mining (ICDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2018.00198","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29
Abstract
We study the important problem of user alignment in e-commerce: to predict whether two online user identities that access an e-commerce site from different devices belong to one real-world person. As input, we have a set of user activity logs from Taobao and some labeled user identity linkages. User activity logs can be modeled using a heterogeneous interaction graph (HIG), and subsequently the user alignment task can be formulated as a semi-supervised HIG embedding problem. HIG embedding is challenging for two reasons: its heterogeneous nature and the presence of edge features. To address the challenges, we propose a novel Heterogeneous Embedding Propagation (HEP) model. The core idea is to iteratively reconstruct a node's embedding from its heterogeneous neighbors in a weighted manner, and meanwhile propagate its embedding updates from reconstruction loss and/or classification loss to its neighbors. We conduct extensive experiments on large-scale datasets from Taobao, demonstrating that HEP significantly outperforms state-of-the-art baselines often by more than 10% in F-scores.