Morphological reinflection with conditional random fields and unsupervised features

L. Liu, L. Mao
{"title":"Morphological reinflection with conditional random fields and unsupervised features","authors":"L. Liu, L. Mao","doi":"10.18653/v1/W16-2006","DOIUrl":null,"url":null,"abstract":"This paper describes our participation in the SIGMORPHON 2016 shared task on morphological reinflection. In the task, we use a linear-chain conditional random field model to learn to map sequences of input characters to sequences of output characters and focus on developing features that are useful for predicting inflectional behavior. Since the training data in the task is limited, we also generalize the training data by extracting, in an unsupervised fashion, the types of consonant-vowel sequences that trigger inflectional behavior, and by extending the available training data through inference of unlabeled morphosyntactic descriptions.","PeriodicalId":186158,"journal":{"name":"Special Interest Group on Computational Morphology and Phonology Workshop","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Special Interest Group on Computational Morphology and Phonology Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/W16-2006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

This paper describes our participation in the SIGMORPHON 2016 shared task on morphological reinflection. In the task, we use a linear-chain conditional random field model to learn to map sequences of input characters to sequences of output characters and focus on developing features that are useful for predicting inflectional behavior. Since the training data in the task is limited, we also generalize the training data by extracting, in an unsupervised fashion, the types of consonant-vowel sequences that trigger inflectional behavior, and by extending the available training data through inference of unlabeled morphosyntactic descriptions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有条件随机场和无监督特征的形态反射
本文描述了我们参与SIGMORPHON 2016关于形态反射的共享任务。在任务中,我们使用线性链条件随机场模型来学习将输入字符序列映射到输出字符序列,并专注于开发对预测屈折行为有用的特征。由于任务中的训练数据是有限的,我们还通过以无监督的方式提取触发屈曲行为的辅音-元音序列的类型来泛化训练数据,并通过推断未标记的形态句法描述来扩展可用的训练数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Colexifications for Bootstrapping Cross-lingual Datasets: The Case of Phonology, Concreteness, and Affectiveness KU-CST at the SIGMORPHON 2020 Task 2 on Unsupervised Morphological Paradigm Completion Linguist vs. Machine: Rapid Development of Finite-State Morphological Grammars Exploring Neural Architectures And Techniques For Typologically Diverse Morphological Inflection SIGMORPHON 2020 Task 0 System Description: ETH Zürich Team
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1