Implementation and Performance of a GPU-Based Monte-Carlo Framework for Determining Design Ice Load

Sara Ayubian, Shadi G. Alawneh, M. Richard, Jan Thijssen
{"title":"Implementation and Performance of a GPU-Based Monte-Carlo Framework for Determining Design Ice Load","authors":"Sara Ayubian, Shadi G. Alawneh, M. Richard, Jan Thijssen","doi":"10.1109/HPCS.2017.27","DOIUrl":null,"url":null,"abstract":"Modern Graphics Processing Units (GPUs) with massive number of threads and many-core architecture support both graphics and general purpose computing. NVIDIA's compute unified device architecture (CUDA) takes advantage of parallel computing and utilizes the tremendous power of GPUs. The present study demonstrates a high performance computing (HPC) framework for a Monte-Carlo simulation to determine design sea ice loads which is implemented in both GPU and CPU. Results show a speedup of up to 130 times for the 4 Tesla K80 GPUs over an optimized CPU OpenMP implementation and speedup of up to 8 times for the 4 Tesla K80 over a single Tesla K80 GPU implementation. The elapsed time of the different implementations has been reduced from about 2.5 hours to 0.7 seconds.","PeriodicalId":115758,"journal":{"name":"2017 International Conference on High Performance Computing & Simulation (HPCS)","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on High Performance Computing & Simulation (HPCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPCS.2017.27","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Modern Graphics Processing Units (GPUs) with massive number of threads and many-core architecture support both graphics and general purpose computing. NVIDIA's compute unified device architecture (CUDA) takes advantage of parallel computing and utilizes the tremendous power of GPUs. The present study demonstrates a high performance computing (HPC) framework for a Monte-Carlo simulation to determine design sea ice loads which is implemented in both GPU and CPU. Results show a speedup of up to 130 times for the 4 Tesla K80 GPUs over an optimized CPU OpenMP implementation and speedup of up to 8 times for the 4 Tesla K80 over a single Tesla K80 GPU implementation. The elapsed time of the different implementations has been reduced from about 2.5 hours to 0.7 seconds.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于gpu的设计冰荷载蒙特卡罗框架的实现与性能
具有大量线程和多核架构的现代图形处理单元(gpu)既支持图形计算,也支持通用计算。NVIDIA的计算统一设备架构(CUDA)利用了并行计算的优势,并利用了gpu的巨大能力。本研究展示了一个高性能计算(HPC)框架,用于蒙特卡罗模拟,以确定在GPU和CPU中实现的设计海冰载荷。结果显示,在优化的CPU OpenMP实现上,4个特斯拉K80 GPU的加速速度高达130倍,4个特斯拉K80的加速速度高达8倍。不同实现的运行时间从大约2.5小时减少到0.7秒。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Distributed Particle-Based Rendering Framework for Large Data Visualization on HPC Environments Practical Implementation of Lattice-Based Program Obfuscators for Point Functions Adaptive Root Cause Analysis for Self-Healing in 5G Networks Power Aware High Performance Computing: Challenges and Opportunities for Application and System Developers — Survey & Tutorial ICARO-PAPM: Congestion Management with Selective Queue Power-Gating
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1