Analysis of the Effect of Adding PNP Phototransistors on Fiber Optic Systems

Faisal Arrasyid
{"title":"Analysis of the Effect of Adding PNP Phototransistors on Fiber Optic Systems","authors":"Faisal Arrasyid","doi":"10.47709/brilliance.v2i1.1540","DOIUrl":null,"url":null,"abstract":"This study analyzes the performance of PNP phototransistors made of Gallium Arsenide (GaAs) and Silicon (Si). Based on the analysis for gallium arsenide and silicon PNP phototransistors, the emitter current at the output is greater than the photon current at the incident. With?= 1017?3;?= 1016?3and?= 1019?3;?= 1016?3The input current for GaAs material is 1.6865×10?7 ., respectively?and 8.0331×10?6A. With the addition of internal gain on the GaAs material, namely; common-base internal gain (?)= 0.9991; 0.8974 and the common-emitter internal gain(?)=1125; 8.7488, then each output current is 1.8973×10?4?and 7.028×10?5?. With the addition of the internal gain on the phototransistor, we get SNR = 26256 and 8022.As for the silicone material with?= 1017m3;?= 1016?3and?= 1019?3;?= 1016?3the input current and output current are respectively 1.0766×10?7?and 1,266×10?6?. With the internal gain on the silicon material, namely; for common-base internal gain(?)=0.9994; 0.9220 and the common-emitter internal gain(?)= 1563; 11,818, then the output currents are 1.6831×10?4A and 1.4827×10?5A, respectively. With the addition of the internal gain, the SNR for silicon is 8.3766×10?5 and 3.3609×10?6, respectively.","PeriodicalId":440433,"journal":{"name":"Brilliance: Research of Artificial Intelligence","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brilliance: Research of Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47709/brilliance.v2i1.1540","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study analyzes the performance of PNP phototransistors made of Gallium Arsenide (GaAs) and Silicon (Si). Based on the analysis for gallium arsenide and silicon PNP phototransistors, the emitter current at the output is greater than the photon current at the incident. With?= 1017?3;?= 1016?3and?= 1019?3;?= 1016?3The input current for GaAs material is 1.6865×10?7 ., respectively?and 8.0331×10?6A. With the addition of internal gain on the GaAs material, namely; common-base internal gain (?)= 0.9991; 0.8974 and the common-emitter internal gain(?)=1125; 8.7488, then each output current is 1.8973×10?4?and 7.028×10?5?. With the addition of the internal gain on the phototransistor, we get SNR = 26256 and 8022.As for the silicone material with?= 1017m3;?= 1016?3and?= 1019?3;?= 1016?3the input current and output current are respectively 1.0766×10?7?and 1,266×10?6?. With the internal gain on the silicon material, namely; for common-base internal gain(?)=0.9994; 0.9220 and the common-emitter internal gain(?)= 1563; 11,818, then the output currents are 1.6831×10?4A and 1.4827×10?5A, respectively. With the addition of the internal gain, the SNR for silicon is 8.3766×10?5 and 3.3609×10?6, respectively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
添加PNP光电晶体管对光纤系统的影响分析
本研究分析了砷化镓(GaAs)和硅(Si)制成的PNP光电晶体管的性能。通过对砷化镓和硅PNP光晶体管的分析发现,输出端的发射极电流大于入射端的光子电流。?= 1017 3; ?3 = 1016 ?= 1019 3; ?= 1016 ?3 . GaAs材料的输入电流为1.6865×10?7 .分别?6和8.0331×10 ?。在GaAs材料上加入内部增益,即;共基内部增益(?)= 0.9991;0.8974共发射极内部增益(?)=1125;8.7488,则每次输出电流为1.8973×10?4?5和7.028×10 ? ?。加上光电晶体管的内部增益,我们得到信噪比= 26256和8022。至于硅胶材料的搭配呢?= 1017立方米;?3 = 1016 ?= 1019 3; ?= 1016 ?3 .输入电流和输出电流分别为1.0766×10?7?和1266×10 ? 6 ?。与硅材料上的内部增益,即;对于共基内部增益(?)=0.9994;0.9220共发射极内部增益(?)= 1563;11818,则输出电流为1.6831×10?4A和1.4827×10?分别为5。加上内部增益,硅的信噪比为8.3766×10?5和3.3609×10?分别为6。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
IoT-Based Rainfall Monitoring System for Chili Farming Land Digital Marketing Efforts to Improve Products of Micro Small and Medium Enterprises (UMKM) in Tegal Evaluating the Efficacy of Traditional Machine Learning Models in Speaker Recognition: A Comparative Study Using the LibriSpeech Dataset Utilization of Artificial Intelligence in Chatbot Development for New Student Admission Support at Cokroaminoto University Palopo Design and Implementation of the SALUTS System to Support of Improvement of Tourism Transactions and Promotion
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1