Brief announcement: revisiting the power-law degree distribution for social graph analysis

A. Sala, Haitao Zheng, Ben Y. Zhao, S. Gaito, G. P. Rossi
{"title":"Brief announcement: revisiting the power-law degree distribution for social graph analysis","authors":"A. Sala, Haitao Zheng, Ben Y. Zhao, S. Gaito, G. P. Rossi","doi":"10.1145/1835698.1835791","DOIUrl":null,"url":null,"abstract":"The study of complex networks led to the belief that the connectivity of network nodes generally follows a Power-law distribution. In this work, we show that modeling large-scale online social networks using a Power-law distribution produces significant fitting errors. We propose the use of a more accurate node degree distribution model based on the Pareto-Lognormal distribution. Using large datasets gathered from Facebook, we show that the Power-law curve produces a significant over-estimation of the number of high degree nodes, leading researchers to erroneous designs for a number of social applications and systems, including shortest-path prediction, community detection, and influence maximization. We provide a formal proof of the error reduction using the Pareto-Lognormal distribution, which we envision will have strong implications on the correctness of social systems and applications.","PeriodicalId":447863,"journal":{"name":"Proceedings of the 29th ACM SIGACT-SIGOPS symposium on Principles of distributed computing","volume":"241 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"39","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 29th ACM SIGACT-SIGOPS symposium on Principles of distributed computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1835698.1835791","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 39

Abstract

The study of complex networks led to the belief that the connectivity of network nodes generally follows a Power-law distribution. In this work, we show that modeling large-scale online social networks using a Power-law distribution produces significant fitting errors. We propose the use of a more accurate node degree distribution model based on the Pareto-Lognormal distribution. Using large datasets gathered from Facebook, we show that the Power-law curve produces a significant over-estimation of the number of high degree nodes, leading researchers to erroneous designs for a number of social applications and systems, including shortest-path prediction, community detection, and influence maximization. We provide a formal proof of the error reduction using the Pareto-Lognormal distribution, which we envision will have strong implications on the correctness of social systems and applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
简短公告:重新审视幂律度分布的社会图谱分析
复杂网络的研究使人们相信网络节点的连通性通常遵循幂律分布。在这项工作中,我们表明,使用幂律分布建模大规模在线社交网络会产生显着的拟合误差。我们建议使用基于Pareto-Lognormal分布的更精确的节点度分布模型。使用从Facebook收集的大型数据集,我们表明幂律曲线对高节点的数量产生了显著的高估,导致研究人员对许多社交应用和系统的错误设计,包括最短路径预测、社区检测和影响最大化。我们使用帕累托对数正态分布提供了误差减少的正式证明,我们设想这将对社会系统和应用程序的正确性产生强烈的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Brief announcement: towards robust medium access in multi-hop networks Brief announcement: capacity of byzantine agreement with finite link capacity - complete characterization of four-node networks Brief announcement: locally-accessible implementations for distributed shared memory multiprocessors Brief announcement: sources of instability in data center multicast Bayesian ignorance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1