A. Sala, Haitao Zheng, Ben Y. Zhao, S. Gaito, G. P. Rossi
{"title":"Brief announcement: revisiting the power-law degree distribution for social graph analysis","authors":"A. Sala, Haitao Zheng, Ben Y. Zhao, S. Gaito, G. P. Rossi","doi":"10.1145/1835698.1835791","DOIUrl":null,"url":null,"abstract":"The study of complex networks led to the belief that the connectivity of network nodes generally follows a Power-law distribution. In this work, we show that modeling large-scale online social networks using a Power-law distribution produces significant fitting errors. We propose the use of a more accurate node degree distribution model based on the Pareto-Lognormal distribution. Using large datasets gathered from Facebook, we show that the Power-law curve produces a significant over-estimation of the number of high degree nodes, leading researchers to erroneous designs for a number of social applications and systems, including shortest-path prediction, community detection, and influence maximization. We provide a formal proof of the error reduction using the Pareto-Lognormal distribution, which we envision will have strong implications on the correctness of social systems and applications.","PeriodicalId":447863,"journal":{"name":"Proceedings of the 29th ACM SIGACT-SIGOPS symposium on Principles of distributed computing","volume":"241 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"39","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 29th ACM SIGACT-SIGOPS symposium on Principles of distributed computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1835698.1835791","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 39
Abstract
The study of complex networks led to the belief that the connectivity of network nodes generally follows a Power-law distribution. In this work, we show that modeling large-scale online social networks using a Power-law distribution produces significant fitting errors. We propose the use of a more accurate node degree distribution model based on the Pareto-Lognormal distribution. Using large datasets gathered from Facebook, we show that the Power-law curve produces a significant over-estimation of the number of high degree nodes, leading researchers to erroneous designs for a number of social applications and systems, including shortest-path prediction, community detection, and influence maximization. We provide a formal proof of the error reduction using the Pareto-Lognormal distribution, which we envision will have strong implications on the correctness of social systems and applications.