Quantitative assessment of qualitative color perception in image database retrieval

M. Albanesi, S. Bandelli, Marco Ferretti
{"title":"Quantitative assessment of qualitative color perception in image database retrieval","authors":"M. Albanesi, S. Bandelli, Marco Ferretti","doi":"10.1109/ICIAP.2001.957044","DOIUrl":null,"url":null,"abstract":"We propose a multiresolution indexing algorithm based on color histogram which exploits the wavelet decomposition and a customized quantization for content-based image retrieval. The aim is to extract automatically the chromatic content of the images and to represent it with simple, robust, efficient and low computational cost descriptors. The proposed method has been integrated for a complete CBIR system, where the classification of images is performed on a qualitative subjective color perception. The system allows testing the semantic and chromatic class homogeneity previously defined by a human observer. Experimental results have been evaluated by the quantitative assessment parameters (averaged precision and recall). Multiresolution proved to be a valid framework to introduce spatiality in color histogram indexing, to dramatically decrease the computational complexity and to validate the qualitative subjective classification.","PeriodicalId":365627,"journal":{"name":"Proceedings 11th International Conference on Image Analysis and Processing","volume":"79 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 11th International Conference on Image Analysis and Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIAP.2001.957044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

We propose a multiresolution indexing algorithm based on color histogram which exploits the wavelet decomposition and a customized quantization for content-based image retrieval. The aim is to extract automatically the chromatic content of the images and to represent it with simple, robust, efficient and low computational cost descriptors. The proposed method has been integrated for a complete CBIR system, where the classification of images is performed on a qualitative subjective color perception. The system allows testing the semantic and chromatic class homogeneity previously defined by a human observer. Experimental results have been evaluated by the quantitative assessment parameters (averaged precision and recall). Multiresolution proved to be a valid framework to introduce spatiality in color histogram indexing, to dramatically decrease the computational complexity and to validate the qualitative subjective classification.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
图像数据库检索中定性色彩感知的定量评价
我们提出了一种基于颜色直方图的多分辨率索引算法,该算法利用小波分解和自定义量化来实现基于内容的图像检索。目的是自动提取图像的彩色内容,并用简单、鲁棒、高效、低计算成本的描述符表示。所提出的方法已经集成到一个完整的CBIR系统中,其中图像分类是在定性的主观色彩感知上进行的。该系统允许测试先前由人类观察者定义的语义和色类同质性。通过定量评价参数(平均精密度和召回率)对实验结果进行了评价。多分辨率被证明是在颜色直方图索引中引入空间性、显著降低计算复杂度和验证定性主观分类的有效框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Circle detection based on orientation matching Towards teleconferencing by view synthesis and large-baseline stereo Learning and caricaturing the face space using self-organization and Hebbian learning for face processing Bayesian face recognition with deformable image models Using feature-vector based analysis, based on principal component analysis and independent component analysis, for analysing hyperspectral images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1