Weiqi Cui, Jiangmin Yu, Yanmin Gong, Eric Chan-Tin
{"title":"Efficient, Effective, and Realistic Website Fingerprinting Mitigation","authors":"Weiqi Cui, Jiangmin Yu, Yanmin Gong, Eric Chan-Tin","doi":"10.4108/eai.29-1-2019.161977","DOIUrl":null,"url":null,"abstract":"Website fingerprinting attacks have been shown to be able to predict the website visited even if the network connection is encrypted and anonymized. These attacks have achieved accuracies as high as 92%. Mitigations to these attacks are using cover/decoy network traffic to add noise, padding to ensure all the network packets are the same size, and introducing network delays to confuse an adversary. Although these mitigations have been shown to be effective, reducing the accuracy to 10%, the overhead is high. The latency overhead is above 100% and the bandwidth overhead is at least 30%. We introduce a new realistic cover traffic algorithm, based on a user’s previous network traffic, to mitigate website fingerprinting attacks. In simulations, our algorithm reduces the accuracy of attacks to 14% with zero latency overhead and about 20% bandwidth overhead. In real-world experiments, our algorithms reduces the accuracy of attacks to 16% with only 20% bandwidth overhead. Received on 30 February 2019; accepted on 20 April 2019; published on 29 April 2019","PeriodicalId":335727,"journal":{"name":"EAI Endorsed Trans. Security Safety","volume":"86 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EAI Endorsed Trans. Security Safety","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4108/eai.29-1-2019.161977","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Website fingerprinting attacks have been shown to be able to predict the website visited even if the network connection is encrypted and anonymized. These attacks have achieved accuracies as high as 92%. Mitigations to these attacks are using cover/decoy network traffic to add noise, padding to ensure all the network packets are the same size, and introducing network delays to confuse an adversary. Although these mitigations have been shown to be effective, reducing the accuracy to 10%, the overhead is high. The latency overhead is above 100% and the bandwidth overhead is at least 30%. We introduce a new realistic cover traffic algorithm, based on a user’s previous network traffic, to mitigate website fingerprinting attacks. In simulations, our algorithm reduces the accuracy of attacks to 14% with zero latency overhead and about 20% bandwidth overhead. In real-world experiments, our algorithms reduces the accuracy of attacks to 16% with only 20% bandwidth overhead. Received on 30 February 2019; accepted on 20 April 2019; published on 29 April 2019