I. Petri, T. Beach, Mengsong Zou, J. Montes, O. Rana, M. Parashar
{"title":"Exploring Models and Mechanisms for Exchanging Resources in a Federated Cloud","authors":"I. Petri, T. Beach, Mengsong Zou, J. Montes, O. Rana, M. Parashar","doi":"10.1109/IC2E.2014.9","DOIUrl":null,"url":null,"abstract":"One of the key benefits of Cloud systems is their ability to provide elastic, on-demand (seemingly infinite) computing capability and performance for supporting service delivery. With the resource availability in single data centres proving to be limited, the option of obtaining extra-resources from a collection of Cloud providers has appeared as an efficacious solution. The ability to utilize resources from multiple Cloud providers is also often mentioned as a means to: (i) prevent vendor lock in, (ii) to enable in house capacity to be combined with an external Cloud provider, (iii) combine specialist capability from multiple Cloud vendors (especially when one vendor does not offer such capability or where such capability may come at a higher price). Such federation of Cloud systems can therefore overcome a limit in capacity and enable providers to dynamically increase the availability of resources to serve requests. We describe and evaluate the establishment of such a federation using a CometCloud based implementation, and consider a number of federation policies with associated scenarios and determine the impact of such policies on the overall status of our system. CometCloud provides an overlay that enables multiple types of Cloud systems (both public and private) to be federated through the use of specialist gateways. We describe how two physical sites, in the UK and the US, can be federated in a seamless way using this system.","PeriodicalId":273902,"journal":{"name":"2014 IEEE International Conference on Cloud Engineering","volume":"104 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Cloud Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IC2E.2014.9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28
Abstract
One of the key benefits of Cloud systems is their ability to provide elastic, on-demand (seemingly infinite) computing capability and performance for supporting service delivery. With the resource availability in single data centres proving to be limited, the option of obtaining extra-resources from a collection of Cloud providers has appeared as an efficacious solution. The ability to utilize resources from multiple Cloud providers is also often mentioned as a means to: (i) prevent vendor lock in, (ii) to enable in house capacity to be combined with an external Cloud provider, (iii) combine specialist capability from multiple Cloud vendors (especially when one vendor does not offer such capability or where such capability may come at a higher price). Such federation of Cloud systems can therefore overcome a limit in capacity and enable providers to dynamically increase the availability of resources to serve requests. We describe and evaluate the establishment of such a federation using a CometCloud based implementation, and consider a number of federation policies with associated scenarios and determine the impact of such policies on the overall status of our system. CometCloud provides an overlay that enables multiple types of Cloud systems (both public and private) to be federated through the use of specialist gateways. We describe how two physical sites, in the UK and the US, can be federated in a seamless way using this system.