A Probabilistic Fusion Framework

Yael Anava, Anna Shtok, Oren Kurland, Ella Rabinovich
{"title":"A Probabilistic Fusion Framework","authors":"Yael Anava, Anna Shtok, Oren Kurland, Ella Rabinovich","doi":"10.1145/2983323.2983739","DOIUrl":null,"url":null,"abstract":"There are numerous methods for fusing document lists retrieved from the same corpus in response to a query. Many of these methods are based on seemingly unrelated techniques and heuristics. Herein we present a probabilistic framework for the fusion task. The framework provides a formal basis for deriving and explaining many fusion approaches and the connections between them. Instantiating the framework using various estimates yields novel fusion methods, some of which significantly outperform state-of-the-art approaches.","PeriodicalId":250808,"journal":{"name":"Proceedings of the 25th ACM International on Conference on Information and Knowledge Management","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 25th ACM International on Conference on Information and Knowledge Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2983323.2983739","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

There are numerous methods for fusing document lists retrieved from the same corpus in response to a query. Many of these methods are based on seemingly unrelated techniques and heuristics. Herein we present a probabilistic framework for the fusion task. The framework provides a formal basis for deriving and explaining many fusion approaches and the connections between them. Instantiating the framework using various estimates yields novel fusion methods, some of which significantly outperform state-of-the-art approaches.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一个概率融合框架
有许多方法可以将从同一语料库检索到的文档列表融合到一个查询中。这些方法中的许多都是基于看似无关的技术和启发式。在此,我们提出了一个融合任务的概率框架。该框架为推导和解释许多融合方法以及它们之间的联系提供了形式化的基础。使用各种估计实例化框架产生新的融合方法,其中一些明显优于最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Querying Minimal Steiner Maximum-Connected Subgraphs in Large Graphs aNMM: Ranking Short Answer Texts with Attention-Based Neural Matching Model Approximate Discovery of Functional Dependencies for Large Datasets Mining Shopping Patterns for Divergent Urban Regions by Incorporating Mobility Data A Personal Perspective and Retrospective on Web Search Technology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1