Understanding I/O Direct Cache Access Performance for End Host Networking

Minhu Wang, Mingwei Xu, Jianping Wu
{"title":"Understanding I/O Direct Cache Access Performance for End Host Networking","authors":"Minhu Wang, Mingwei Xu, Jianping Wu","doi":"10.1145/3508042","DOIUrl":null,"url":null,"abstract":"Direct Cache Access (DCA) enables a network interface card (NIC) to load and store data directly on the processor cache, as conventional Direct Memory Access (DMA) is no longer suitable as the bridge between NIC and CPU in the era of 100 Gigabit Ethernet. As numerous I/O devices and cores compete for scarce cache resources, making the most of DCA for networking applications with varied objectives and constraints is a challenge, especially given the increasing complexity of modern cache hardware and I/O stacks. In this paper, we reverse engineer details of one commercial implementation of DCA, Intel's Data Direct I/O (DDIO), to explicate the importance of hardware-level investigation into DCA. Based on the learned knowledge of DCA and network I/O stacks, we (1) develop an analytical framework to predict the effectiveness of DCA (i.e., its hit rate) under certain hardware specifications, system configurations, and application properties; (2) measure penalties of the ineffective use of DCA (i.e., its miss penalty) to characterize its benefits; and (3) show that our reverse engineering, measurement, and model contribute to a deeper understanding of DCA, which in turn helps diagnose, optimize, and design end-host networking.","PeriodicalId":426760,"journal":{"name":"Proceedings of the ACM on Measurement and Analysis of Computing Systems","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM on Measurement and Analysis of Computing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3508042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Direct Cache Access (DCA) enables a network interface card (NIC) to load and store data directly on the processor cache, as conventional Direct Memory Access (DMA) is no longer suitable as the bridge between NIC and CPU in the era of 100 Gigabit Ethernet. As numerous I/O devices and cores compete for scarce cache resources, making the most of DCA for networking applications with varied objectives and constraints is a challenge, especially given the increasing complexity of modern cache hardware and I/O stacks. In this paper, we reverse engineer details of one commercial implementation of DCA, Intel's Data Direct I/O (DDIO), to explicate the importance of hardware-level investigation into DCA. Based on the learned knowledge of DCA and network I/O stacks, we (1) develop an analytical framework to predict the effectiveness of DCA (i.e., its hit rate) under certain hardware specifications, system configurations, and application properties; (2) measure penalties of the ineffective use of DCA (i.e., its miss penalty) to characterize its benefits; and (3) show that our reverse engineering, measurement, and model contribute to a deeper understanding of DCA, which in turn helps diagnose, optimize, and design end-host networking.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
了解终端主机组网中I/O直接缓存访问性能
DCA (Direct Cache Access)是指在千兆以太网时代,传统的DMA (Direct Memory Access)方式已经不能作为连接网卡和CPU的桥梁,而DCA (Direct Cache Access)技术可以直接将数据加载到处理器缓存中并存储。由于大量I/O设备和核心争夺稀缺的缓存资源,因此为具有不同目标和约束的网络应用程序充分利用DCA是一项挑战,特别是考虑到现代缓存硬件和I/O堆栈日益复杂。在本文中,我们对DCA的一个商业实现,英特尔的数据直接I/O (DDIO)的细节进行了逆向工程,以说明硬件级研究DCA的重要性。基于所学到的DCA和网络I/O堆栈知识,我们(1)开发了一个分析框架来预测DCA在某些硬件规格、系统配置和应用程序属性下的有效性(即命中率);(2)衡量无效使用DCA的处罚(即未命中处罚),以表征其效益;(3)表明我们的逆向工程、测量和模型有助于更深入地理解DCA,这反过来有助于诊断、优化和设计终端主机网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.20
自引率
0.00%
发文量
0
期刊最新文献
A Large Scale Study and Classification of VirusTotal Reports on Phishing and Malware URLs POMACS V7, N2, June 2023 Editorial SplitRPC: A {Control + Data} Path Splitting RPC Stack for ML Inference Serving Smash: Flexible, Fast, and Resource-efficient Placement and Lookup of Distributed Storage Towards Accelerating Data Intensive Application's Shuffle Process Using SmartNICs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1