MVL: Multi-View Learning for News Recommendation

Santosh T.Y.S.S, Avirup Saha, Niloy Ganguly
{"title":"MVL: Multi-View Learning for News Recommendation","authors":"Santosh T.Y.S.S, Avirup Saha, Niloy Ganguly","doi":"10.1145/3397271.3401294","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a Multi-View Learning (MVL) framework for news recommendation which uses both the content view and the user-news interaction graph view. In the content view, we use a news encoder to learn news representations from different information like titles, bodies and categories. We obtain representation of user from his/her browsed news conditioned on the candidate news article to be recommended. In the graph-view, we propose to use a graph neural network to capture the user-news, user-user and news-news relatedness in the user-news bipartite graphs by modeling the interactions between different users and news. In addition, we propose to incorporate attention mechanism into the graph neural network to model the importance of these interactions for more informative representation learning of user and news. Experiments on a real world dataset validate the effectiveness of MVL.","PeriodicalId":252050,"journal":{"name":"Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3397271.3401294","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

Abstract

In this paper, we propose a Multi-View Learning (MVL) framework for news recommendation which uses both the content view and the user-news interaction graph view. In the content view, we use a news encoder to learn news representations from different information like titles, bodies and categories. We obtain representation of user from his/her browsed news conditioned on the candidate news article to be recommended. In the graph-view, we propose to use a graph neural network to capture the user-news, user-user and news-news relatedness in the user-news bipartite graphs by modeling the interactions between different users and news. In addition, we propose to incorporate attention mechanism into the graph neural network to model the importance of these interactions for more informative representation learning of user and news. Experiments on a real world dataset validate the effectiveness of MVL.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MVL:新闻推荐的多视角学习
本文提出了一种基于内容视图和用户新闻交互图视图的新闻推荐多视图学习(MVL)框架。在内容视图中,我们使用新闻编码器从标题、正文和类别等不同的信息中学习新闻表示。我们根据要推荐的候选新闻文章,从他/她浏览的新闻中获得用户的表示。在图视图中,我们建议使用图神经网络通过建模不同用户与新闻之间的交互来捕获用户-新闻、用户-用户和新闻-新闻的二部图相关性。此外,我们建议将注意力机制整合到图神经网络中,以模拟这些交互对用户和新闻更有信息表示学习的重要性。在实际数据集上的实验验证了MVL的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
MHM: Multi-modal Clinical Data based Hierarchical Multi-label Diagnosis Prediction Correlated Features Synthesis and Alignment for Zero-shot Cross-modal Retrieval DVGAN Models Versus Satisfaction: Towards a Better Understanding of Evaluation Metrics Global Context Enhanced Graph Neural Networks for Session-based Recommendation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1