Optimizing data-intensive computations in existing libraries with split annotations

Shoumik Palkar, M. Zaharia
{"title":"Optimizing data-intensive computations in existing libraries with split annotations","authors":"Shoumik Palkar, M. Zaharia","doi":"10.1145/3341301.3359652","DOIUrl":null,"url":null,"abstract":"Data movement between main memory and the CPU is a major bottleneck in parallel data-intensive applications. In response, researchers have proposed using compilers and intermediate representations (IRs) that apply optimizations such as loop fusion under existing high-level APIs such as NumPy and TensorFlow. Even though these techniques generally do not require changes to user applications, they require intrusive changes to the library itself: often, library developers must rewrite each function using a new IR. In this paper, we propose a new technique called split annotations (SAs) that enables key data movement optimizations over unmodified library functions. SAs only require developers to annotate functions and implement an API that specifies how to partition data in the library. The annotation and API describe how to enable cross-function data pipelining and parallelization, while respecting each function's correctness constraints. We implement a parallel runtime for SAs in a system called Mozart. We show that Mozart can accelerate workloads in libraries such as Intel MKL and Pandas by up to 15x, with no library modifications. Mozart also provides performance gains competitive with solutions that require rewriting libraries, and can sometimes outperform these systems by up to 2x by leveraging existing hand-optimized code.","PeriodicalId":331561,"journal":{"name":"Proceedings of the 27th ACM Symposium on Operating Systems Principles","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 27th ACM Symposium on Operating Systems Principles","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3341301.3359652","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

Data movement between main memory and the CPU is a major bottleneck in parallel data-intensive applications. In response, researchers have proposed using compilers and intermediate representations (IRs) that apply optimizations such as loop fusion under existing high-level APIs such as NumPy and TensorFlow. Even though these techniques generally do not require changes to user applications, they require intrusive changes to the library itself: often, library developers must rewrite each function using a new IR. In this paper, we propose a new technique called split annotations (SAs) that enables key data movement optimizations over unmodified library functions. SAs only require developers to annotate functions and implement an API that specifies how to partition data in the library. The annotation and API describe how to enable cross-function data pipelining and parallelization, while respecting each function's correctness constraints. We implement a parallel runtime for SAs in a system called Mozart. We show that Mozart can accelerate workloads in libraries such as Intel MKL and Pandas by up to 15x, with no library modifications. Mozart also provides performance gains competitive with solutions that require rewriting libraries, and can sometimes outperform these systems by up to 2x by leveraging existing hand-optimized code.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用拆分注释优化现有库中的数据密集型计算
在主存和CPU之间的数据移动是并行数据密集型应用程序的主要瓶颈。作为回应,研究人员建议使用编译器和中间表示(ir),这些编译器和中间表示(ir)在现有的高级api(如NumPy和TensorFlow)下应用循环融合等优化。尽管这些技术通常不需要更改用户应用程序,但它们需要对库本身进行侵入性更改:通常,库开发人员必须使用新的IR重写每个函数。在本文中,我们提出了一种称为拆分注释(SAs)的新技术,它可以在未修改的库函数上实现关键数据移动优化。sa只要求开发人员注释函数并实现指定如何在库中划分数据的API。注释和API描述了如何启用跨功能的数据流水线和并行化,同时尊重每个函数的正确性约束。我们在一个叫做Mozart的系统中为sa实现一个并行运行时。我们表明,Mozart可以在不修改库的情况下,将Intel MKL和Pandas等库中的工作负载加速15倍。Mozart还提供了与需要重写库的解决方案相比具有竞争力的性能提升,并且通过利用现有的手动优化代码,有时可以比这些系统的性能高出2倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
TASO Gerenuk The inflection point hypothesis: a principled debugging approach for locating the root cause of a failure Yodel I4
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1