Programming Strategies for GPUs and their Power Consumption

Sayan Ghosh, B. Chapman
{"title":"Programming Strategies for GPUs and their Power Consumption","authors":"Sayan Ghosh, B. Chapman","doi":"10.1109/PACT.2011.51","DOIUrl":null,"url":null,"abstract":"GPUs are slowly becoming ubiquitous devices in high performance computing. Nvidia's newly released version 4.0 of the CUDA API[2] for GPU programming offers multiple ways to program on GPUs and emphasizes on Multi-GPU environments which are common in modern day compute clusters. However, despite of the subsequent progress in FLOP counts, the bane of large scale computing systems have been increased energy consumption and cooling costs. Since the energy (power X time) of a system has an obvious correlation with the user program, hence different programming techniques on GPUs could have a relation to the overall system energy consumption.","PeriodicalId":106423,"journal":{"name":"2011 International Conference on Parallel Architectures and Compilation Techniques","volume":"31 5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Parallel Architectures and Compilation Techniques","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PACT.2011.51","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

GPUs are slowly becoming ubiquitous devices in high performance computing. Nvidia's newly released version 4.0 of the CUDA API[2] for GPU programming offers multiple ways to program on GPUs and emphasizes on Multi-GPU environments which are common in modern day compute clusters. However, despite of the subsequent progress in FLOP counts, the bane of large scale computing systems have been increased energy consumption and cooling costs. Since the energy (power X time) of a system has an obvious correlation with the user program, hence different programming techniques on GPUs could have a relation to the overall system energy consumption.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
gpu的编程策略及其功耗
gpu正在逐渐成为高性能计算中无处不在的设备。Nvidia最新发布的GPU编程CUDA API[2] 4.0版本提供了多种GPU编程方式,并强调了现代计算集群中常见的多GPU环境。然而,尽管在FLOP计数方面取得了进展,但大规模计算系统的祸根已经增加了能源消耗和冷却成本。由于系统的能量(功率X时间)与用户程序有明显的相关性,因此gpu上不同的编程技术可能与整个系统的能耗有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Modeling and Performance Evaluation of TSO-Preserving Binary Optimization An Alternative Memory Access Scheduling in Manycore Accelerators DiDi: Mitigating the Performance Impact of TLB Shootdowns Using a Shared TLB Directory Compiling Dynamic Data Structures in Python to Enable the Use of Multi-core and Many-core Libraries Enhancing Data Locality for Dynamic Simulations through Asynchronous Data Transformations and Adaptive Control
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1