{"title":"Evaluation of the Features Significance Based on Neural Networks in Tasks of the Analysis of the Distance Learning Quality","authors":"K. Filonenko, O. D. Ruban, O. O. Fomin","doi":"10.32626/2308-5916.2018-18.102-110","DOIUrl":null,"url":null,"abstract":"Информатизация современного образования способствует созданию новых методов разработки учебных курсов, что существенно снижает качество обучения студентов. В настоящей работе предложен метод оценки значимости признаков при анализе качества внедрения дистанционного обучения в высшие учебные заведения с применением нейронной сети. Представлен алгоритм проведения исследования значимости признаков, состоящий из трех этапов: подготовка данных, нейросетевое моделирование и анализ и интерпретация результатов исследования. Подготовка данных — самый трудоемкий процесс, требующий максимального сосредоточения со стороны аналитика. В качестве обучающей выборки использованы реальные данные обучения студентов университета из системы дистанционного обучения Moodle. Данная система активно используется в качестве инструмента ведения учебного процесса в Одесском национальном политехническом университете. Нейросетевое моделирование заключается в исследовании информативности признаков после обучения нейронной сети. В качестве входов нейронов использовались данные об успеваемости студентов курсов, в качестве выходов — их результирующая оценка за курс. Информативность каждого признака определяется с помощью матрицы весов, которая формируется после обучения нейронной сети. Благодаря матрице весов можно определить, какой из признаков наиболее информативен, т.е. наиболее значим для исследования. Значения матрицы весов визуализированы с помощью графиков и гистограмм и дают возможность проанализировать результаты исследования и наглядно подтвердить значимость признаков. Таким образом, решена задача оценки значимости признаков при анализе данных обучения студентов в системе дистанционного обучения Moodle. Определены исследуемые признаки. Сформирована матрица весов признаков. Обосновано предположение о том, что значения весов признаков характеризуют уровень значимости каждого исследуемого признака. Выделены наиболее значимые признаки, которые влияют на качество внедрения дистанционного обучения.","PeriodicalId":375537,"journal":{"name":"Mathematical and computer modelling. Series: Technical sciences","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical and computer modelling. Series: Technical sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32626/2308-5916.2018-18.102-110","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Информатизация современного образования способствует созданию новых методов разработки учебных курсов, что существенно снижает качество обучения студентов. В настоящей работе предложен метод оценки значимости признаков при анализе качества внедрения дистанционного обучения в высшие учебные заведения с применением нейронной сети. Представлен алгоритм проведения исследования значимости признаков, состоящий из трех этапов: подготовка данных, нейросетевое моделирование и анализ и интерпретация результатов исследования. Подготовка данных — самый трудоемкий процесс, требующий максимального сосредоточения со стороны аналитика. В качестве обучающей выборки использованы реальные данные обучения студентов университета из системы дистанционного обучения Moodle. Данная система активно используется в качестве инструмента ведения учебного процесса в Одесском национальном политехническом университете. Нейросетевое моделирование заключается в исследовании информативности признаков после обучения нейронной сети. В качестве входов нейронов использовались данные об успеваемости студентов курсов, в качестве выходов — их результирующая оценка за курс. Информативность каждого признака определяется с помощью матрицы весов, которая формируется после обучения нейронной сети. Благодаря матрице весов можно определить, какой из признаков наиболее информативен, т.е. наиболее значим для исследования. Значения матрицы весов визуализированы с помощью графиков и гистограмм и дают возможность проанализировать результаты исследования и наглядно подтвердить значимость признаков. Таким образом, решена задача оценки значимости признаков при анализе данных обучения студентов в системе дистанционного обучения Moodle. Определены исследуемые признаки. Сформирована матрица весов признаков. Обосновано предположение о том, что значения весов признаков характеризуют уровень значимости каждого исследуемого признака. Выделены наиболее значимые признаки, которые влияют на качество внедрения дистанционного обучения.