Meta-Learning Techniques to Analyze the Raman Data for Optical Diagnosis of Oral Cancer Detection

Mukta Sharma, Lokesh Sharma, M. Jeng, Liann-Be Chang, Shiang-Fu Huang, Shih-Lin Wu
{"title":"Meta-Learning Techniques to Analyze the Raman Data for Optical Diagnosis of Oral Cancer Detection","authors":"Mukta Sharma, Lokesh Sharma, M. Jeng, Liann-Be Chang, Shiang-Fu Huang, Shih-Lin Wu","doi":"10.1109/IUCC/DSCI/SmartCNS.2019.00134","DOIUrl":null,"url":null,"abstract":"Recently, Machine Learning methods have shown great improvement while analyzing the biomedical data. Raman Spectroscopy (RS), a non-invasive technique, and widely used in screening to diagnose the oral cancer. In order to spot cancer in a smarter and faster way, we have employed Meta-Learning (ML) techniques to learn such as Bagging and Boosting on RS data. Further, we employed normal and tumor tissue class classification by Linear Discriminant Analysis (LDA), Quadratic Discriminant Analysis (QDA) and Adaptive Boosting (AdaBoost) classifiers. The present study aims at examining the RS data with total 110 samples, including 57 tumor and 53 normal ones. To evaluate the performance, we have used the training samples to optimize, and testing samples to generalize the model parameters. The results show that the AdaBoost classifier with Bagging techniques showed the significant changes in accuracy.","PeriodicalId":410905,"journal":{"name":"2019 IEEE International Conferences on Ubiquitous Computing & Communications (IUCC) and Data Science and Computational Intelligence (DSCI) and Smart Computing, Networking and Services (SmartCNS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conferences on Ubiquitous Computing & Communications (IUCC) and Data Science and Computational Intelligence (DSCI) and Smart Computing, Networking and Services (SmartCNS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IUCC/DSCI/SmartCNS.2019.00134","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Recently, Machine Learning methods have shown great improvement while analyzing the biomedical data. Raman Spectroscopy (RS), a non-invasive technique, and widely used in screening to diagnose the oral cancer. In order to spot cancer in a smarter and faster way, we have employed Meta-Learning (ML) techniques to learn such as Bagging and Boosting on RS data. Further, we employed normal and tumor tissue class classification by Linear Discriminant Analysis (LDA), Quadratic Discriminant Analysis (QDA) and Adaptive Boosting (AdaBoost) classifiers. The present study aims at examining the RS data with total 110 samples, including 57 tumor and 53 normal ones. To evaluate the performance, we have used the training samples to optimize, and testing samples to generalize the model parameters. The results show that the AdaBoost classifier with Bagging techniques showed the significant changes in accuracy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
元学习技术分析口腔癌光学诊断的拉曼数据
近年来,机器学习方法在分析生物医学数据方面有了很大的进步。拉曼光谱技术作为一种非侵入性技术,在口腔癌的筛查诊断中得到了广泛的应用。为了更智能、更快速地发现癌症,我们采用了元学习(ML)技术对RS数据进行Bagging和Boosting等学习。此外,我们采用线性判别分析(LDA)、二次判别分析(QDA)和自适应增强(AdaBoost)分类器对正常组织和肿瘤组织进行分类。本研究的目的是检查110个样本的RS数据,其中肿瘤57例,正常53例。为了评估性能,我们使用训练样本进行优化,使用测试样本对模型参数进行泛化。结果表明,采用Bagging技术的AdaBoost分类器在准确率上有显著的变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Message from the RTWC 2019 Workshop Chairs Message from the NGDN 2019 Workshop Chairs Ideation Support System with Personalized Knowledge Level Prediction Message from the DSCI 2019 General Chairs Connection Degree Cost and Reward Based Algorithm in Cognitive Radio Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1