Sparse nonnegative matrix factorization with the elastic net

Weixiang Liu, Songfeng Zheng, Sen Jia, L. Shen, Xianghua Fu
{"title":"Sparse nonnegative matrix factorization with the elastic net","authors":"Weixiang Liu, Songfeng Zheng, Sen Jia, L. Shen, Xianghua Fu","doi":"10.1109/BIBM.2010.5706574","DOIUrl":null,"url":null,"abstract":"Nonnegative matrix factorization is used extensively for feature extraction and clustering analysis. Recently many sparsity/sparseness constraints, such as L1 penalty, are introduced for sparse nonnegative matrix factorization. Inspired by sparsity measures from linear regression model, this paper proposes to integrate nonnegative matrix factorization with another sparsity constraint, the elastic net. The experimental results of clustering analysis on three gene expression datasets demonstrate the effectiveness of the proposed method.","PeriodicalId":275098,"journal":{"name":"2010 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBM.2010.5706574","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Nonnegative matrix factorization is used extensively for feature extraction and clustering analysis. Recently many sparsity/sparseness constraints, such as L1 penalty, are introduced for sparse nonnegative matrix factorization. Inspired by sparsity measures from linear regression model, this paper proposes to integrate nonnegative matrix factorization with another sparsity constraint, the elastic net. The experimental results of clustering analysis on three gene expression datasets demonstrate the effectiveness of the proposed method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
弹性网稀疏非负矩阵分解
非负矩阵分解被广泛用于特征提取和聚类分析。近年来,在稀疏非负矩阵分解中引入了许多稀疏性/稀疏性约束,如L1惩罚。受线性回归模型稀疏性测度的启发,本文提出了将非负矩阵分解与另一种稀疏性约束弹性网相结合的方法。对三个基因表达数据集进行聚类分析的实验结果表明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A gene ranking method using text-mining for the identification of disease related genes alns — A searchable and filterable sequence alignment format A fast and noise-adaptive rough-fuzzy hybrid algorithm for medical image segmentation An accurate, automatic method for markerless alignment of electron tomographic images Unsupervised integration of multiple protein disorder predictors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1