{"title":"Low-area hardware implementations of CLOC, SILC and AES-OTR","authors":"S. Banik, A. Bogdanov, Kazuhiko Minematsu","doi":"10.1109/HST.2016.7495559","DOIUrl":null,"url":null,"abstract":"The most compact implementation of the AES-128 algorithm was the 8-bit serial circuit proposed in the work of Moradi et. al. (Eurocrypt 2011). The circuit has an 8-bit datapath and occupies area equivalent to around 2400 GE. Since many authenticated encryption modes use the AES-128 algorithm as the underlying block cipher, we investigate if they can be implemented in a compact fashion using the 8-bit serialized AES circuit. In this context we investigate three authenticated encryption modes CLOC, SILC and AES-OTR. Using the standard cell library of the STM 90nm process, we implemented CLOC and SILC with around 3110 GE whereas AES-OTR was implemented with around 4720 GE.","PeriodicalId":194799,"journal":{"name":"2016 IEEE International Symposium on Hardware Oriented Security and Trust (HOST)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Symposium on Hardware Oriented Security and Trust (HOST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HST.2016.7495559","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10
Abstract
The most compact implementation of the AES-128 algorithm was the 8-bit serial circuit proposed in the work of Moradi et. al. (Eurocrypt 2011). The circuit has an 8-bit datapath and occupies area equivalent to around 2400 GE. Since many authenticated encryption modes use the AES-128 algorithm as the underlying block cipher, we investigate if they can be implemented in a compact fashion using the 8-bit serialized AES circuit. In this context we investigate three authenticated encryption modes CLOC, SILC and AES-OTR. Using the standard cell library of the STM 90nm process, we implemented CLOC and SILC with around 3110 GE whereas AES-OTR was implemented with around 4720 GE.