Ai-Chun Pang, W. Chung, Te-Chuan Chiu, Junshan Zhang
{"title":"Latency-Driven Cooperative Task Computing in Multi-user Fog-Radio Access Networks","authors":"Ai-Chun Pang, W. Chung, Te-Chuan Chiu, Junshan Zhang","doi":"10.1109/ICDCS.2017.83","DOIUrl":null,"url":null,"abstract":"Fog computing is emerging as one promising solution to meet the increasing demand for ultra-low latency services in wireless networks. Taking a forward-looking perspective, we propose a Fog-Radio Access Network (F-RAN) model, which utilizes the existing infrastructure, e.g., small cells and macro base stations, to achieve the ultra-low latency by joint computing across multiple F-RAN nodes and near-range communications at the edge. We treat the low latency design as an optimization problem, which characterizes the tradeoff between communication and computing across multiple F-RAN nodes. Since this problem is NP-hard, we propose a latency-driven cooperative task computing algorithm with one-for-all concept for simultaneous selection of the F-RAN nodes to serve with proper heterogeneous resource allocation for multi-user services. Considering the limited heterogeneous resources shared among all users, we advocate the one-for-all strategy for every user taking other's situation into consideration and seek for a \"win-win\" solution. The numerical results show that the low latency services can be achieved by F-RAN via latency-driven cooperative task computing.","PeriodicalId":127689,"journal":{"name":"2017 IEEE 37th International Conference on Distributed Computing Systems (ICDCS)","volume":"446 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"66","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 37th International Conference on Distributed Computing Systems (ICDCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDCS.2017.83","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 66
Abstract
Fog computing is emerging as one promising solution to meet the increasing demand for ultra-low latency services in wireless networks. Taking a forward-looking perspective, we propose a Fog-Radio Access Network (F-RAN) model, which utilizes the existing infrastructure, e.g., small cells and macro base stations, to achieve the ultra-low latency by joint computing across multiple F-RAN nodes and near-range communications at the edge. We treat the low latency design as an optimization problem, which characterizes the tradeoff between communication and computing across multiple F-RAN nodes. Since this problem is NP-hard, we propose a latency-driven cooperative task computing algorithm with one-for-all concept for simultaneous selection of the F-RAN nodes to serve with proper heterogeneous resource allocation for multi-user services. Considering the limited heterogeneous resources shared among all users, we advocate the one-for-all strategy for every user taking other's situation into consideration and seek for a "win-win" solution. The numerical results show that the low latency services can be achieved by F-RAN via latency-driven cooperative task computing.