FastCGRA: A Modeling, Evaluation, and Exploration Platform for Large-Scale Coarse-Grained Reconfigurable Arrays

Su Zheng, Kaisen Zhang, Yaoguang Tian, Wenbo Yin, Lingli Wang, Xuegong Zhou
{"title":"FastCGRA: A Modeling, Evaluation, and Exploration Platform for Large-Scale Coarse-Grained Reconfigurable Arrays","authors":"Su Zheng, Kaisen Zhang, Yaoguang Tian, Wenbo Yin, Lingli Wang, Xuegong Zhou","doi":"10.1109/ICFPT52863.2021.9609928","DOIUrl":null,"url":null,"abstract":"Coarse-Grained Reconfigurable Arrays (CGRAs) provide sufficient flexibility in domain-specific applications with high hardware efficiency, which make CGRAs suitable for fast-evolving fields such as neural network acceleration and edge computing. To meet the requirement of the fast evolution, we propose FastCGRA, the modeling, mapping, and exploration platform for large-scale CGRAs. FastCGRA supports hierarchical architecture description and automatic switch module generation. Connectivity-aware packing and graph partition algorithms are designed to reduce the complexity of placement and routing. The graph homomorphism placement algorithm in FastCGRA enables efficient placement on large-scale CGRAs. The packing and placement algorithms cooperate with a negotiation-based routing algorithm to form an integral mapping procedure. FastCGRA can support the modeling and mapping of large-scale CGRAs with significantly higher placement and routing efficiency than existing platforms. The automatic switch module generation method can reduce the complexity of CGRA interconnection design. With these features, FastCGRA can boost the exploration of large-scale CGRAs.","PeriodicalId":376220,"journal":{"name":"2021 International Conference on Field-Programmable Technology (ICFPT)","volume":"85 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Field-Programmable Technology (ICFPT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICFPT52863.2021.9609928","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Coarse-Grained Reconfigurable Arrays (CGRAs) provide sufficient flexibility in domain-specific applications with high hardware efficiency, which make CGRAs suitable for fast-evolving fields such as neural network acceleration and edge computing. To meet the requirement of the fast evolution, we propose FastCGRA, the modeling, mapping, and exploration platform for large-scale CGRAs. FastCGRA supports hierarchical architecture description and automatic switch module generation. Connectivity-aware packing and graph partition algorithms are designed to reduce the complexity of placement and routing. The graph homomorphism placement algorithm in FastCGRA enables efficient placement on large-scale CGRAs. The packing and placement algorithms cooperate with a negotiation-based routing algorithm to form an integral mapping procedure. FastCGRA can support the modeling and mapping of large-scale CGRAs with significantly higher placement and routing efficiency than existing platforms. The automatic switch module generation method can reduce the complexity of CGRA interconnection design. With these features, FastCGRA can boost the exploration of large-scale CGRAs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
FastCGRA:一个大规模粗粒度可重构阵列的建模、评估和探索平台
粗粒度可重构阵列(CGRAs)具有较高的硬件效率,在特定领域的应用中具有足够的灵活性,适用于神经网络加速和边缘计算等快速发展的领域。为了满足快速演化的需求,我们提出了大规模CGRAs建模、制图和勘探平台FastCGRA。FastCGRA支持分层架构描述和自动生成交换模块。连接感知的包装和图划分算法旨在降低放置和路由的复杂性。FastCGRA中的图同态布局算法实现了大规模CGRAs的高效布局。所述打包和放置算法与基于协商的路由算法协同形成一个完整的映射过程。FastCGRA可以支持大规模CGRAs的建模和映射,具有比现有平台更高的放置和路由效率。自动生成交换模块的方法可以降低CGRA互连设计的复杂性。利用这些特性,FastCGRA可以促进大规模CGRAs的探索。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Characterization of IOBUF-based Ring Oscillators StreamZip: Compressed Sliding-Windows for Stream Aggregation Tens of gigabytes per second JSON-to-Arrow conversion with FPGA accelerators A High-Performance and Flexible FPGA Inference Accelerator for Decision Forests Based on Prior Feature Space Partitioning SoC FPGA implementation of an unmanned mobile vehicle with an image transmission system over VNC
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1