The Algorithm Research of Image Classification Based on Deep Convolutional Network

Wu Daqin, Huang Haiyan
{"title":"The Algorithm Research of Image Classification Based on Deep Convolutional Network","authors":"Wu Daqin, Huang Haiyan","doi":"10.1109/ICSGEA.2018.00064","DOIUrl":null,"url":null,"abstract":"In order to solve large amount of images classification issues, a method is introduced by combining with Convolutional Neural Network(CNN) and IMVCl-10. Based on a large number of training data, the classification accuracy of the Convolution Neural Network can exceed the SVM classification accuracy. In this dataset, 3K and 100K batch data are used to train the depth convolution network, and the classification accuracy of 70% and more than 80% can be achieved.","PeriodicalId":445324,"journal":{"name":"2018 International Conference on Smart Grid and Electrical Automation (ICSGEA)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Smart Grid and Electrical Automation (ICSGEA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSGEA.2018.00064","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In order to solve large amount of images classification issues, a method is introduced by combining with Convolutional Neural Network(CNN) and IMVCl-10. Based on a large number of training data, the classification accuracy of the Convolution Neural Network can exceed the SVM classification accuracy. In this dataset, 3K and 100K batch data are used to train the depth convolution network, and the classification accuracy of 70% and more than 80% can be achieved.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度卷积网络的图像分类算法研究
为了解决大量图像分类问题,提出了一种卷积神经网络(CNN)与IMVCl-10相结合的方法。基于大量的训练数据,卷积神经网络的分类精度可以超过支持向量机的分类精度。在该数据集中,分别使用3K和100K批数据对深度卷积网络进行训练,分类准确率分别达到70%和80%以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Research on Medium-Long Term Power Load Forecasting Method Based on Load Decomposition and Big Data Technology Design and Implementation of Intelligent Kitchen System Based on Internet of Things Condition Maintenance on Secondary Equipment of Relay Protection in Substation Information Acquisition Structure of Internet of Things Based on Intelligent Gateway between ZigBee and Ethernet Preliminary Study on a Fiber Optic Extrinsic Fabry-Perot Interferometer Sensor of Acoustic Detection for Partial Discharge
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1