Deep Optimization Prior for THz Model Parameter Estimation

Tak Ming Wong, Hartmut Bauermeister, M. Kahl, P. Bolívar, Michael Möller, A. Kolb
{"title":"Deep Optimization Prior for THz Model Parameter Estimation","authors":"Tak Ming Wong, Hartmut Bauermeister, M. Kahl, P. Bolívar, Michael Möller, A. Kolb","doi":"10.1109/WACV51458.2022.00410","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a deep optimization prior approach with application to the estimation of material-related model parameters from terahertz (THz) data that is acquired using a Frequency Modulated Continuous Wave (FMCW) THz scanning system. A stable estimation of the THz model parameters for low SNR and shot noise configurations is essential to achieve acquisition times required for applications in, e.g., quality control. Conceptually, our deep optimization prior approach estimates the desired THz model parameters by optimizing for the weights of a neural network. While such a technique was shown to improve the reconstruction quality for convex objectives in the seminal work of Ulyanov et al., our paper demonstrates that deep priors also allow to find better local optima in the non-convex energy landscape of the nonlinear inverse problem arising from THz imaging. We verify this claim numerically on various THz parameter estimation problems for synthetic and real data under low SNR and shot noise conditions. While the low SNR scenario not even requires regularization, the impact of shot noise is significantly reduced by total variation (TV) regularization. We compare our approach with existing optimization techniques that require sophisticated physically motivated initialization, and with a 1D single-pixel reparametrization method.","PeriodicalId":297092,"journal":{"name":"2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)","volume":"159 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WACV51458.2022.00410","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper, we propose a deep optimization prior approach with application to the estimation of material-related model parameters from terahertz (THz) data that is acquired using a Frequency Modulated Continuous Wave (FMCW) THz scanning system. A stable estimation of the THz model parameters for low SNR and shot noise configurations is essential to achieve acquisition times required for applications in, e.g., quality control. Conceptually, our deep optimization prior approach estimates the desired THz model parameters by optimizing for the weights of a neural network. While such a technique was shown to improve the reconstruction quality for convex objectives in the seminal work of Ulyanov et al., our paper demonstrates that deep priors also allow to find better local optima in the non-convex energy landscape of the nonlinear inverse problem arising from THz imaging. We verify this claim numerically on various THz parameter estimation problems for synthetic and real data under low SNR and shot noise conditions. While the low SNR scenario not even requires regularization, the impact of shot noise is significantly reduced by total variation (TV) regularization. We compare our approach with existing optimization techniques that require sophisticated physically motivated initialization, and with a 1D single-pixel reparametrization method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
太赫兹模型参数估计的深度优化先验
在本文中,我们提出了一种深度优化先验方法,并应用于从使用调频连续波(FMCW)太赫兹扫描系统获取的太赫兹(THz)数据中估计材料相关模型参数。对于低信噪比和小噪声配置的太赫兹模型参数的稳定估计对于实现诸如质量控制等应用所需的采集时间至关重要。从概念上讲,我们的深度优化先验方法通过优化神经网络的权重来估计所需的太赫兹模型参数。虽然这种技术在Ulyanov等人的开创性工作中被证明可以提高凸目标的重建质量,但我们的论文表明,深度先验也可以在太赫兹成像引起的非线性逆问题的非凸能量景观中找到更好的局部最优解。我们在低信噪比和小噪声条件下对合成数据和实际数据的各种太赫兹参数估计问题进行了数值验证。虽然低信噪比场景甚至不需要正则化,但总变差(TV)正则化显著降低了射击噪声的影响。我们将我们的方法与现有的优化技术进行了比较,这些优化技术需要复杂的物理动机初始化,以及一维单像素重新参数化方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Unsupervised Learning for Human Sensing Using Radio Signals AirCamRTM: Enhancing Vehicle Detection for Efficient Aerial Camera-based Road Traffic Monitoring QUALIFIER: Question-Guided Self-Attentive Multimodal Fusion Network for Audio Visual Scene-Aware Dialog Transductive Weakly-Supervised Player Detection using Soccer Broadcast Videos Inpaint2Learn: A Self-Supervised Framework for Affordance Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1