Independent counter estimation buckets

Gil Einziger, B. Fellman, Yaron Kassner
{"title":"Independent counter estimation buckets","authors":"Gil Einziger, B. Fellman, Yaron Kassner","doi":"10.1109/INFOCOM.2015.7218646","DOIUrl":null,"url":null,"abstract":"Measurement capabilities are essential for a variety of network applications, such as load balancing, routing, fairness and intrusion detection. These capabilities require large counter arrays in order to monitor the traffic of all network flows. While commodity SRAM memories are capable of operating at line speed, they are too small to accommodate large counter arrays. Previous works suggested estimators, which trade precision for reduced space. However, in order to accurately estimate the largest counter, these methods compromise the accuracy of the rest of the counters. In this work we present a closed form representation of the optimal estimation function. We then introduce Independent Counter Estimation Buckets (ICE-Buckets), a novel algorithm that improves estimation accuracy for all counters. This is achieved by separating the flows to buckets and configuring the optimal estimation function according to each bucket's counter scale. We prove an improved upper bound on the relative error and demonstrate an accuracy improvement of up to 57 times on real Internet packet traces.","PeriodicalId":342583,"journal":{"name":"2015 IEEE Conference on Computer Communications (INFOCOM)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Conference on Computer Communications (INFOCOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INFOCOM.2015.7218646","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

Abstract

Measurement capabilities are essential for a variety of network applications, such as load balancing, routing, fairness and intrusion detection. These capabilities require large counter arrays in order to monitor the traffic of all network flows. While commodity SRAM memories are capable of operating at line speed, they are too small to accommodate large counter arrays. Previous works suggested estimators, which trade precision for reduced space. However, in order to accurately estimate the largest counter, these methods compromise the accuracy of the rest of the counters. In this work we present a closed form representation of the optimal estimation function. We then introduce Independent Counter Estimation Buckets (ICE-Buckets), a novel algorithm that improves estimation accuracy for all counters. This is achieved by separating the flows to buckets and configuring the optimal estimation function according to each bucket's counter scale. We prove an improved upper bound on the relative error and demonstrate an accuracy improvement of up to 57 times on real Internet packet traces.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
独立计数器估计桶
测量能力对于各种网络应用是必不可少的,例如负载平衡、路由、公平性和入侵检测。这些功能需要大型计数器阵列,以便监视所有网络流的流量。虽然商品SRAM存储器能够以线速度运行,但它们太小,无法容纳大型计数器阵列。以前的工作建议估计器,它以精度换取减少的空间。然而,为了准确地估计最大的计数器,这些方法损害了其余计数器的准确性。在这项工作中,我们提出了最优估计函数的封闭形式表示。然后,我们引入了独立计数器估计桶(ICE-Buckets),这是一种提高所有计数器估计精度的新算法。这是通过将流分离到桶并根据每个桶的计数器规模配置最优估计函数来实现的。我们证明了一个改进的相对误差上界,并证明了在真实的互联网数据包轨迹上精度提高了57倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ambient rendezvous: Energy-efficient neighbor discovery via acoustic sensing A-DCF: Design and implementation of delay and queue length based wireless MAC Original SYN: Finding machines hidden behind firewalls Supporting WiFi and LTE co-existence MadeCR: Correlation-based malware detection for cognitive radio
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1