{"title":"Recognizing User-Defined Subsequences in Human Motion Data","authors":"J. Sedmidubský, P. Zezula","doi":"10.1145/3323873.3326922","DOIUrl":null,"url":null,"abstract":"Motion capture technologies digitize human movements by tracking 3D positions of specific skeleton joints in time. Such spatio-temporal multimedia data have an enormous application potential in many fields, ranging from computer animation, through security and sports to medicine, but their computerized processing is a difficult problem. In this paper, we focus on an important task of recognition of a user-defined motion, based on a collection of labelled actions known in advance. We utilize current advances in deep feature learning and scalable similarity retrieval to build an effective and efficient k-nearest-neighbor recognition technique for 3D human motion data. The properties of the technique are demonstrated by a web application which allows a user to browse long motion sequences and specify any subsequence as the input for probabilistic recognition based on 130 predefined classes.","PeriodicalId":149041,"journal":{"name":"Proceedings of the 2019 on International Conference on Multimedia Retrieval","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2019 on International Conference on Multimedia Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3323873.3326922","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Motion capture technologies digitize human movements by tracking 3D positions of specific skeleton joints in time. Such spatio-temporal multimedia data have an enormous application potential in many fields, ranging from computer animation, through security and sports to medicine, but their computerized processing is a difficult problem. In this paper, we focus on an important task of recognition of a user-defined motion, based on a collection of labelled actions known in advance. We utilize current advances in deep feature learning and scalable similarity retrieval to build an effective and efficient k-nearest-neighbor recognition technique for 3D human motion data. The properties of the technique are demonstrated by a web application which allows a user to browse long motion sequences and specify any subsequence as the input for probabilistic recognition based on 130 predefined classes.