A closer look to elitism in ε-dominance many-objective optimization

Ryoma Sano, H. Aguirre, Kiyoshi Tanaka
{"title":"A closer look to elitism in ε-dominance many-objective optimization","authors":"Ryoma Sano, H. Aguirre, Kiyoshi Tanaka","doi":"10.1109/CEC.2017.7969638","DOIUrl":null,"url":null,"abstract":"Elitism is a common feature of many-objective optimizers and has a strong impact on the performance of the algorithms. The way elitism is implemented vary among the various approaches to many-objective optimization and there are no detailed studies about their effects. In this work we focus on a multi- and many-objective optimization approach based on ε-dominance. We track the number of generations a solution remains in the population to bias survival selection or the creation of neighborhoods for parent selection. We investigate how elitist strategies affect performance of the algorithm and show that convergence and diversity can be enhanced by using different strategies for elitism on many-objective uni-modal and multi-modal problems with 4, 5, and 6 objectives.","PeriodicalId":335123,"journal":{"name":"2017 IEEE Congress on Evolutionary Computation (CEC)","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Congress on Evolutionary Computation (CEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2017.7969638","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Elitism is a common feature of many-objective optimizers and has a strong impact on the performance of the algorithms. The way elitism is implemented vary among the various approaches to many-objective optimization and there are no detailed studies about their effects. In this work we focus on a multi- and many-objective optimization approach based on ε-dominance. We track the number of generations a solution remains in the population to bias survival selection or the creation of neighborhoods for parent selection. We investigate how elitist strategies affect performance of the algorithm and show that convergence and diversity can be enhanced by using different strategies for elitism on many-objective uni-modal and multi-modal problems with 4, 5, and 6 objectives.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ε-显性多目标优化中的精英主义
精英主义是多目标优化器的一个共同特征,对算法的性能有很大的影响。在多目标优化的各种方法中,精英主义的实现方式各不相同,对其效果也没有详细的研究。本文研究了一种基于ε-优势的多目标优化方法。我们跟踪一个解决方案在种群中保留的代数,以偏向生存选择或创建亲本选择的邻里。我们研究了精英策略如何影响算法的性能,并表明通过对具有4、5和6个目标的多目标单模态和多模态问题使用不同的精英策略可以增强收敛性和多样性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Knowledge-based particle swarm optimization for PID controller tuning Local Optima Networks of the Permutation Flowshop Scheduling Problem: Makespan vs. total flow time Information core optimization using Evolutionary Algorithm with Elite Population in recommender systems New heuristics for multi-objective worst-case optimization in evidence-based robust design Bus Routing for emergency evacuations: The case of the Great Fire of Valparaiso
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1