Analysis and implementation of a wavelet based spectrum sensing method for low SNR scenarios

D. Capriglione, G. Cerro, L. Ferrigno, G. Miele
{"title":"Analysis and implementation of a wavelet based spectrum sensing method for low SNR scenarios","authors":"D. Capriglione, G. Cerro, L. Ferrigno, G. Miele","doi":"10.1109/WoWMoM.2016.7523585","DOIUrl":null,"url":null,"abstract":"In Cognitive Radio applications, spectrum sensing plays a fundamental role in order to learn the behavior of primary users (PUs) and access to the spectral resource opportunistically. Among the available methods, a surely promising approach is the wavelet based one. It allows to subdivide the wide-band spectrum under analysis in a proper number of sub-bands, based on Power Spectral Density (PSD) irregularities, remarked by the extrema of the Continuous Wavelet Transform (CWT) first derivative. Generally, such kind of methods works well as long as good Signal-to-Noise Ratio (SNR) can be experienced over the span of interest. In this context, starting from an approach present in literature, the present work proposes, customizes and implements a wavelet based spectrum sensing method, thought to operate also in challenging SNR scenarios.","PeriodicalId":187747,"journal":{"name":"2016 IEEE 17th International Symposium on A World of Wireless, Mobile and Multimedia Networks (WoWMoM)","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 17th International Symposium on A World of Wireless, Mobile and Multimedia Networks (WoWMoM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WoWMoM.2016.7523585","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

In Cognitive Radio applications, spectrum sensing plays a fundamental role in order to learn the behavior of primary users (PUs) and access to the spectral resource opportunistically. Among the available methods, a surely promising approach is the wavelet based one. It allows to subdivide the wide-band spectrum under analysis in a proper number of sub-bands, based on Power Spectral Density (PSD) irregularities, remarked by the extrema of the Continuous Wavelet Transform (CWT) first derivative. Generally, such kind of methods works well as long as good Signal-to-Noise Ratio (SNR) can be experienced over the span of interest. In this context, starting from an approach present in literature, the present work proposes, customizes and implements a wavelet based spectrum sensing method, thought to operate also in challenging SNR scenarios.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于小波的低信噪比频谱感知方法的分析与实现
在认知无线电应用中,频谱感知是了解主用户行为和获取频谱资源的基础。在现有的方法中,基于小波的方法无疑是一种很有前途的方法。基于功率谱密度(PSD)的不规则性(由连续小波变换(CWT)一阶导数的极值表示),它允许将被分析的宽带频谱细分为适当数量的子带。一般来说,只要在感兴趣的范围内可以体验到良好的信噪比(SNR),这种方法就可以很好地工作。在此背景下,本文从文献中的方法出发,提出、定制并实现了一种基于小波的频谱感知方法,该方法被认为也适用于具有挑战性的信噪比场景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Experimental validations of bandwidth compressed multicarrier signals Asynchronous reputation systems in device-to-device ecosystems Measurement-based study on the influence of localization errors on estimated shadow correlations An autonomous diagnostic tool for the WirelessHART industrial standard Evaluation of the IEEE 802.11ah Restricted Access Window mechanism for dense IoT networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1