Enabling exact delay synthesis

L. Amarù, Mathias Soeken, P. Vuillod, Jiong Luo, A. Mishchenko, P. Gaillardon, Janet Olson, R. Brayton, G. Micheli
{"title":"Enabling exact delay synthesis","authors":"L. Amarù, Mathias Soeken, P. Vuillod, Jiong Luo, A. Mishchenko, P. Gaillardon, Janet Olson, R. Brayton, G. Micheli","doi":"10.1109/ICCAD.2017.8203799","DOIUrl":null,"url":null,"abstract":"Given (i) a Boolean function, (ii) a set of arrival times at the inputs, and (iii) a gate library with associated delay values, the exact delay synthesis problem asks for a circuit implementation which minimizes the arrival time at the output(s). The exact delay synthesis problem, with given input arrival times, relates to computing the communication complexity of a Boolean function, which is an intractable problem. Input arrival times are variable and can take any value, thereby making the exact delay synthesis search space infinite. This paper presents theory and algorithms for exact delay synthesis. We introduce the theory of equioptimizable arrival times, which allows us to partition all arrival time patterns into a finite set of equivalence classes. Thanks to this new theory, we create for the first time exact delay circuit databases covering all Boolean functions up to 5 variables and all possible arrival time patterns. We describe further arrival time compression techniques which enable the creation of larger databases. We propose an enhanced delay synthesis flow capable of dealing with large circuits, combining exact delay logic rewriting and Boolean optimization techniques, attaining unprecedented results. We improve 9/10 of the best known results in the EPFL arithmetic delay synthesis competition, outperforming previous best results up to 3x. Embedded in a commercial EDA flow for ASICs, our exact delay synthesis techniques reduce the total negative slack by 12.17%, after physical implementation, at negligible area and runtime costs.","PeriodicalId":126686,"journal":{"name":"2017 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)","volume":"159 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAD.2017.8203799","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

Given (i) a Boolean function, (ii) a set of arrival times at the inputs, and (iii) a gate library with associated delay values, the exact delay synthesis problem asks for a circuit implementation which minimizes the arrival time at the output(s). The exact delay synthesis problem, with given input arrival times, relates to computing the communication complexity of a Boolean function, which is an intractable problem. Input arrival times are variable and can take any value, thereby making the exact delay synthesis search space infinite. This paper presents theory and algorithms for exact delay synthesis. We introduce the theory of equioptimizable arrival times, which allows us to partition all arrival time patterns into a finite set of equivalence classes. Thanks to this new theory, we create for the first time exact delay circuit databases covering all Boolean functions up to 5 variables and all possible arrival time patterns. We describe further arrival time compression techniques which enable the creation of larger databases. We propose an enhanced delay synthesis flow capable of dealing with large circuits, combining exact delay logic rewriting and Boolean optimization techniques, attaining unprecedented results. We improve 9/10 of the best known results in the EPFL arithmetic delay synthesis competition, outperforming previous best results up to 3x. Embedded in a commercial EDA flow for ASICs, our exact delay synthesis techniques reduce the total negative slack by 12.17%, after physical implementation, at negligible area and runtime costs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
实现精确延迟合成
给定(i)一个布尔函数,(ii)一组到达输入端的时间,以及(iii)一个带有相关延迟值的门库,精确的延迟合成问题要求一个最小化到达输出端的时间的电路实现。给定输入到达时间下的精确延迟合成问题涉及布尔函数的通信复杂度计算,是一个棘手的问题。输入到达时间是可变的,可以取任意值,从而使精确延迟综合搜索空间无限。本文给出了精确延迟合成的理论和算法。我们引入了等优化到达时间理论,它允许我们将所有到达时间模式划分为有限的等价类集合。由于这个新理论,我们首次创建了精确的延迟电路数据库,涵盖了所有布尔函数最多5个变量和所有可能的到达时间模式。我们描述了进一步的到达时间压缩技术,它可以创建更大的数据库。我们提出了一种能够处理大型电路的增强延迟合成流,结合了精确的延迟逻辑重写和布尔优化技术,获得了前所未有的结果。我们提高了EPFL算法延迟合成竞赛中最知名结果的9/10,比之前的最佳结果高出3倍。我们的精确延迟合成技术嵌入到用于asic的商业EDA流程中,在物理实现后,以可忽略不计的面积和运行时间成本将总负空闲减少12.17%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Clepsydra: Modeling timing flows in hardware designs A case for low frequency single cycle multi hop NoCs for energy efficiency and high performance P4: Phase-based power/performance prediction of heterogeneous systems via neural networks Cyclist: Accelerating hardware development A coordinated synchronous and asynchronous parallel routing approach for FPGAs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1