Quantum NN vs. NN in signal recognition

Xin-Yi Tsai, Yu-Ju Chen, Huang-Chu Huang, Shang-Jen Chuang, R. Hwang
{"title":"Quantum NN vs. NN in signal recognition","authors":"Xin-Yi Tsai, Yu-Ju Chen, Huang-Chu Huang, Shang-Jen Chuang, R. Hwang","doi":"10.1109/ICITA.2005.228","DOIUrl":null,"url":null,"abstract":"In this paper, the signal recognition by using quantum neural network (QNN) is studied and simulated. The signals with fuzziness distributed in the boundary of two different types of signals could be effectively recognized due to the structure of QNN's hidden units. To demonstrate the capability of QNN in recognition, the signals in a two-dimension (NC2) non-convex system is simulated. All the experiments are also performed by using the traditional neural network (NN) for a comparison.","PeriodicalId":371528,"journal":{"name":"Third International Conference on Information Technology and Applications (ICITA'05)","volume":"106 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Third International Conference on Information Technology and Applications (ICITA'05)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICITA.2005.228","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

In this paper, the signal recognition by using quantum neural network (QNN) is studied and simulated. The signals with fuzziness distributed in the boundary of two different types of signals could be effectively recognized due to the structure of QNN's hidden units. To demonstrate the capability of QNN in recognition, the signals in a two-dimension (NC2) non-convex system is simulated. All the experiments are also performed by using the traditional neural network (NN) for a comparison.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
量子神经网络与神经网络在信号识别中的对比
本文对利用量子神经网络(QNN)进行信号识别进行了研究和仿真。由于QNN隐含单元的结构,使得分布在两种不同类型信号边界上的模糊信号能够被有效识别。为了验证QNN的识别能力,对二维(NC2)非凸系统中的信号进行了仿真。并与传统神经网络(NN)进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Protecting Customer’s Privacy in Querying Valuable Information Combined with E-Payment Scheme Image deblurring via smoothness-switching on Holder spaces PURPLE: a reflective middleware for pervasive computing A grid semantic approach for a digital archive integrated architecture Adaptive Modulation with Space-Time Block Coding for MIMO-OFDM Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1