A Comparative Study of Convolutional Neural Network Model for Chinese Flower Tea Classification

Tantowi Putra Agung Setiawan, Daffa Arrazi, Kenzie Marcell Owen Indrajaya, M. Meiliana, Muhamad Fajar
{"title":"A Comparative Study of Convolutional Neural Network Model for Chinese Flower Tea Classification","authors":"Tantowi Putra Agung Setiawan, Daffa Arrazi, Kenzie Marcell Owen Indrajaya, M. Meiliana, Muhamad Fajar","doi":"10.46338/ijetae0123_11","DOIUrl":null,"url":null,"abstract":"While flower teas are well-known for their health benefit, little did people know, there are several types of flower tea, and each type has its health benefit. Due to the unavailability of an automated system for classifying Chinese flower tea at the meantime, we then decided to apply the Convolutional Neural Network to help the wider community or flower tea plantation owners to classify flower tea more quickly, accurately, and automated. The purpose of this research is to classify flower tea based on their type by using CNN algorithm. In this research, we used multiple CNN models to find the most suitable architecture. The CNN models compared are ResNet50, SqueezeNet, AlexNet, and ResNet18. The result indicates AlexNet to achieve the highest accuracy of 97.92%","PeriodicalId":169403,"journal":{"name":"International Journal of Emerging Technology and Advanced Engineering","volume":"298 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Emerging Technology and Advanced Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46338/ijetae0123_11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

While flower teas are well-known for their health benefit, little did people know, there are several types of flower tea, and each type has its health benefit. Due to the unavailability of an automated system for classifying Chinese flower tea at the meantime, we then decided to apply the Convolutional Neural Network to help the wider community or flower tea plantation owners to classify flower tea more quickly, accurately, and automated. The purpose of this research is to classify flower tea based on their type by using CNN algorithm. In this research, we used multiple CNN models to find the most suitable architecture. The CNN models compared are ResNet50, SqueezeNet, AlexNet, and ResNet18. The result indicates AlexNet to achieve the highest accuracy of 97.92%
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
卷积神经网络模型在中国花茶分类中的比较研究
虽然花茶以其健康益处而闻名,但很少有人知道,花茶有几种类型,每种类型都有其健康益处。由于目前还没有自动分类中国花茶的系统,我们决定应用卷积神经网络来帮助更广泛的社区或花茶种植园所有者更快、更准确、更自动化地分类花茶。本研究的目的是利用CNN算法对花茶进行分类。在本研究中,我们使用多个CNN模型来寻找最合适的架构。对比的CNN模型有ResNet50、SqueezeNet、AlexNet和ResNet18。结果表明,AlexNet达到了97.92%的最高准确率
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Impact of Climate Change on Fish Species Classification Using Machine Learning and Deep Learning Algorithms Bibliometric Analysis of the Influence of Artificial Intelligence on the Development of Education Wireless IoT Networks Security and Lightweight Encryption Schemes- Survey Challenges of Requirements Engineering in Agile Projects: A Systematic Review From Data to Design: An IoT-Based Novel Solution for Combating Distracted Driving and Speeding Events
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1