Predictive Modeling of Holdup in Horizontal Wateroil Flow Using a Neural Network Approach

C. Díaz, O. González-Estrada, M. Cely
{"title":"Predictive Modeling of Holdup in Horizontal Wateroil Flow Using a Neural Network Approach","authors":"C. Díaz, O. González-Estrada, M. Cely","doi":"10.23967/WCCM-ECCOMAS.2020.283","DOIUrl":null,"url":null,"abstract":"In this work, the application of an artificial neural network (ANN) is proposed to develop a predicting model for the holdup of a two-phase flow composed of water and mineral oil in a horizontal pipe. For this, the surface velocities of each fluid and the differential pressure in the pipeline are used as input parameters of the multilayer artificial neural network with backpropagation, while the holdup of the fluids is used as the output parameter for the training. A set of 56 experimental data was obtained in the LabPetroCEPETRO-UNICAMP laboratory. The best performing results for the predictive model show a mean absolute error (AAPE) of 3.01% and a coefficient of determination R2 of 0.9964 using 15 neurons in the hidden layer of the network and the TanSig transfer function.","PeriodicalId":148883,"journal":{"name":"14th WCCM-ECCOMAS Congress","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"14th WCCM-ECCOMAS Congress","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23967/WCCM-ECCOMAS.2020.283","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this work, the application of an artificial neural network (ANN) is proposed to develop a predicting model for the holdup of a two-phase flow composed of water and mineral oil in a horizontal pipe. For this, the surface velocities of each fluid and the differential pressure in the pipeline are used as input parameters of the multilayer artificial neural network with backpropagation, while the holdup of the fluids is used as the output parameter for the training. A set of 56 experimental data was obtained in the LabPetroCEPETRO-UNICAMP laboratory. The best performing results for the predictive model show a mean absolute error (AAPE) of 3.01% and a coefficient of determination R2 of 0.9964 using 15 neurons in the hidden layer of the network and the TanSig transfer function.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于神经网络的水平水油流含率预测模型
本文提出了一种基于人工神经网络(ANN)的水平管道中水矿物油两相流含率预测模型。为此,将各流体的表面速度和管道内的压差作为反向传播的多层人工神经网络的输入参数,流体的含率作为训练的输出参数。在labpetrocepetroo - unicamp实验室获得了一组56个实验数据。使用TanSig传递函数和网络隐含层中的15个神经元,预测模型的平均绝对误差(AAPE)为3.01%,决定系数R2为0.9964。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Energy Preserving Multiphase Flows: Application to Falling Films On the Quantification of Discretization Uncertainty: Comparison of Two Paradigms Multiphysics Modelling of a Hybrid Rocket Engine On Preconditioning Variable Poisson Equation with Extreme Contrasts in the Coefficients Rectangular Isotropic Kirchhoff-Love Plate on an Elastic Foundation under the Action of Unsteady Elastic Diffusion Perturbations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1