Modern technologies of deep learning for forecasting time series

А.И. Сотников
{"title":"Modern technologies of deep learning for forecasting time series","authors":"А.И. Сотников","doi":"10.21499/2409-1650-29-3-95-105","DOIUrl":null,"url":null,"abstract":"Прогнозирование временных рядов стало очень интенсивной областью исследований, число которых в последние годы даже увеличивается. Глубокие нейронные сети доказали свою эффективность и достигают высокой точности во многих областях применения. По этим причинам в настоящее время они являются одним из наиболее широко используемых методов машинного обучения для решения проблем, связанных с большими данными.\n Time series forecasting has become a very intensive area of research, the number of which has even increased in recent years. Deep neural networks have been proven to be effective and achieve high accuracy in many applications. For these reasons, they are currently one of the most widely used machine learning methods for solving big data problems.","PeriodicalId":424160,"journal":{"name":"Informacionno-technologicheskij vestnik","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Informacionno-technologicheskij vestnik","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21499/2409-1650-29-3-95-105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Прогнозирование временных рядов стало очень интенсивной областью исследований, число которых в последние годы даже увеличивается. Глубокие нейронные сети доказали свою эффективность и достигают высокой точности во многих областях применения. По этим причинам в настоящее время они являются одним из наиболее широко используемых методов машинного обучения для решения проблем, связанных с большими данными. Time series forecasting has become a very intensive area of research, the number of which has even increased in recent years. Deep neural networks have been proven to be effective and achieve high accuracy in many applications. For these reasons, they are currently one of the most widely used machine learning methods for solving big data problems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
预测时间序列的现代深度学习技术
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Assessment of the Readiness of the Equipment of the Launch Space Complex at the Early Stages of its Creation The accuracy of measuring the information parameter of the signal by a tracking meter in aviation and rocket and space technology against the background of additive and multiplicative interference. Measurement of arrival time. Part III Problems of multiple use of liquid rocket propulsion systems Multiple sun-synchronous orbits for full coverage of the Earth Numerical and expert-oriented method of choosing the parameters of Sun-synchronous orbits for wide-scale monitoring Northern Russia regions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1