3D Geological Model: A Geostatistical Approach of Turbidite Deposits, Los Molles Fm, Neuquen Basin, Argentina

A. Silveira, M. Vargas, V. Engelke, P. Paim, M. Morris, J. E. Faccion
{"title":"3D Geological Model: A Geostatistical Approach of Turbidite Deposits, Los Molles Fm, Neuquen Basin, Argentina","authors":"A. Silveira, M. Vargas, V. Engelke, P. Paim, M. Morris, J. E. Faccion","doi":"10.3997/2214-4609.201902224","DOIUrl":null,"url":null,"abstract":"Summary A recurrent challenge of geological modeling is bridging the gap between data with different resolution, such as the outcrop with the exploration resolution. By only integrating outcrop data from Arroyo La Jardineira, Neuquen Basin (AR), we integrated the object-based stochastic simulation for four depositional sequences that register a turbidite succession deposited in a deep-marine setting. This study aims (i) to determine a concise geological model derived from a plethora of simulations; (ii) to validate the uses of object-modeling as a constraint to facies distribution, and (iii) to evaluate the uncertainties when the data is scarce. The 3D numerical model allows the quantification of geological parameters, by testing contrasting geological scenarios. A quantitative sedimentological model was build integrating and using data derived from outcrops. The methodology utilized in this work enhanced the outcropping analysis, being a predictive tool to estimate faciological heterogeneities in subsurface explorational models.","PeriodicalId":186806,"journal":{"name":"Petroleum Geostatistics 2019","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Petroleum Geostatistics 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3997/2214-4609.201902224","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Summary A recurrent challenge of geological modeling is bridging the gap between data with different resolution, such as the outcrop with the exploration resolution. By only integrating outcrop data from Arroyo La Jardineira, Neuquen Basin (AR), we integrated the object-based stochastic simulation for four depositional sequences that register a turbidite succession deposited in a deep-marine setting. This study aims (i) to determine a concise geological model derived from a plethora of simulations; (ii) to validate the uses of object-modeling as a constraint to facies distribution, and (iii) to evaluate the uncertainties when the data is scarce. The 3D numerical model allows the quantification of geological parameters, by testing contrasting geological scenarios. A quantitative sedimentological model was build integrating and using data derived from outcrops. The methodology utilized in this work enhanced the outcropping analysis, being a predictive tool to estimate faciological heterogeneities in subsurface explorational models.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
三维地质模型:阿根廷Neuquen盆地Los Molles Fm浊积岩矿床的地质统计学方法
地质建模的一个反复出现的挑战是弥合不同分辨率数据之间的差距,例如露头与勘探分辨率。通过仅整合来自Neuquen盆地Arroyo La Jardineira (AR)的露头数据,我们将基于对象的随机模拟集成到四个沉积序列中,这些沉积序列记录了沉积在深海环境中的浊积岩演替。本研究的目的是:(i)从大量的模拟中确定一个简明的地质模型;(ii)验证对象建模作为相分布约束的使用,以及(iii)在数据稀缺时评估不确定性。三维数值模型允许地质参数量化,通过测试对比地质情景。结合露头资料,建立了定量沉积学模型。这项工作中使用的方法增强了露头分析,成为估计地下勘探模型中岩性非均质性的预测工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Forward Model Applied to Channelized Turbidite Systems: A Case Study of the Benin Major Valley Fill Stochastic Seismic Inversion Based on a Fuzzy Model A Bayesian Approach for Full-waveform Inversion Using Wide-aperture Seismic Data Ensemble-based Kernel Learning to Handle Rock-physics-model Imperfection in Seismic History Matching: A Real Field Case Study Features of Factor Models in Seismic
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1