Supervised and unsupervised approaches for controlling narrow lexical focus in sequence-to-sequence speech synthesis

Slava Shechtman, Raul Fernandez, D. Haws
{"title":"Supervised and unsupervised approaches for controlling narrow lexical focus in sequence-to-sequence speech synthesis","authors":"Slava Shechtman, Raul Fernandez, D. Haws","doi":"10.1109/SLT48900.2021.9383591","DOIUrl":null,"url":null,"abstract":"Although Sequence-to-Sequence (S2S) architectures have become state-of-the-art in speech synthesis, capable of generating outputs that approach the perceptual quality of natural samples, they are limited by a lack of flexibility when it comes to controlling the output. In this work we present a framework capable of controlling the prosodic output via a set of concise, interpretable, disentangled parameters. We apply this framework to the realization of emphatic lexical focus, proposing a variety of architectures designed to exploit different levels of supervision based on the availability of labeled resources. We evaluate these approaches via listening tests that demonstrate we are able to successfully realize controllable focus while maintaining the same, or higher, naturalness over an established baseline, and we explore how the different approaches compare when synthesizing in a target voice with or without labeled data.","PeriodicalId":243211,"journal":{"name":"2021 IEEE Spoken Language Technology Workshop (SLT)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Spoken Language Technology Workshop (SLT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SLT48900.2021.9383591","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

Although Sequence-to-Sequence (S2S) architectures have become state-of-the-art in speech synthesis, capable of generating outputs that approach the perceptual quality of natural samples, they are limited by a lack of flexibility when it comes to controlling the output. In this work we present a framework capable of controlling the prosodic output via a set of concise, interpretable, disentangled parameters. We apply this framework to the realization of emphatic lexical focus, proposing a variety of architectures designed to exploit different levels of supervision based on the availability of labeled resources. We evaluate these approaches via listening tests that demonstrate we are able to successfully realize controllable focus while maintaining the same, or higher, naturalness over an established baseline, and we explore how the different approaches compare when synthesizing in a target voice with or without labeled data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
序列到序列语音合成中控制狭窄词汇焦点的监督与非监督方法
尽管序列到序列(S2S)架构在语音合成中已经成为最先进的技术,能够产生接近自然样本感知质量的输出,但在控制输出时,它们受到缺乏灵活性的限制。在这项工作中,我们提出了一个框架,能够通过一组简洁、可解释、解纠缠的参数来控制韵律输出。我们将这个框架应用于强调词汇焦点的实现,提出了各种架构,旨在利用基于标记资源可用性的不同级别的监督。我们通过听力测试来评估这些方法,这些测试表明我们能够成功地实现可控焦点,同时在既定基线上保持相同或更高的自然度,并且我们探索了在有或没有标记数据的目标语音中合成不同方法时的比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Through the Words of Viewers: Using Comment-Content Entangled Network for Humor Impression Recognition Analysis of Multimodal Features for Speaking Proficiency Scoring in an Interview Dialogue Convolution-Based Attention Model With Positional Encoding For Streaming Speech Recognition On Embedded Devices Two-Stage Augmentation and Adaptive CTC Fusion for Improved Robustness of Multi-Stream end-to-end ASR Speaker-Independent Visual Speech Recognition with the Inception V3 Model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1