Xiaofeng Chen, Ruiqi Guo, Zhiheng Yue, Yang Hu, Leibo Liu, Shaojun Wei, S. Yin
{"title":"A Systolic Computing-in-Memory Array based Accelerator with Predictive Early Activation for Spatiotemporal Convolutions","authors":"Xiaofeng Chen, Ruiqi Guo, Zhiheng Yue, Yang Hu, Leibo Liu, Shaojun Wei, S. Yin","doi":"10.1109/AICAS57966.2023.10168581","DOIUrl":null,"url":null,"abstract":"Residual (2+1)-dimensional convolution neural network (R(2+1)D CNN) has achieved great success in video recognition due to the spatiotemporal convolution structure. However, R(2+1)D CNN incurs large energy and latency overhead because of intensive computation and frequent memory access. To solve the issues, we propose a digital SRAM-CIM based accelerator with two key features: (1) Systolic CIM array to efficiently match massive computations in regular architecture; (2) Digtal CIM circuit design with output sparsity predicition to avoid redundant computations. The proposed design is implemented in 28nm technology and achieves an energy efficiency of 21.87 TOPS/W at 200 MHz and 0.9 V supply voltage.","PeriodicalId":296649,"journal":{"name":"2023 IEEE 5th International Conference on Artificial Intelligence Circuits and Systems (AICAS)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 5th International Conference on Artificial Intelligence Circuits and Systems (AICAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AICAS57966.2023.10168581","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Residual (2+1)-dimensional convolution neural network (R(2+1)D CNN) has achieved great success in video recognition due to the spatiotemporal convolution structure. However, R(2+1)D CNN incurs large energy and latency overhead because of intensive computation and frequent memory access. To solve the issues, we propose a digital SRAM-CIM based accelerator with two key features: (1) Systolic CIM array to efficiently match massive computations in regular architecture; (2) Digtal CIM circuit design with output sparsity predicition to avoid redundant computations. The proposed design is implemented in 28nm technology and achieves an energy efficiency of 21.87 TOPS/W at 200 MHz and 0.9 V supply voltage.