{"title":"Analysis of voltage stability issues with distributed generation penetration in distribution networks","authors":"Po-Chen Chen, V. Malbasa, M. Kezunovic","doi":"10.1109/NAPS.2013.6666862","DOIUrl":null,"url":null,"abstract":"This paper presents an overall analysis of how the penetration of distributed generation in low-voltage secondary distribution networks affects voltage stability. It is critical that the voltage collapse point be carefully studied under different system operating points to prevent degradation of service. System components have been sophisticatedly modeled in ATP/EMTP. DGs are allocated in a probabilistic fashion to account for uncertainties in future allocation. A large number of experiments under both light and peak load conditions have been carried out to provide realistic results. Results indicate that voltage stability is positively correlated with penetration of DG, but large induction type DG may lower the voltage stability margin.","PeriodicalId":421943,"journal":{"name":"2013 North American Power Symposium (NAPS)","volume":"2020 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 North American Power Symposium (NAPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAPS.2013.6666862","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18
Abstract
This paper presents an overall analysis of how the penetration of distributed generation in low-voltage secondary distribution networks affects voltage stability. It is critical that the voltage collapse point be carefully studied under different system operating points to prevent degradation of service. System components have been sophisticatedly modeled in ATP/EMTP. DGs are allocated in a probabilistic fashion to account for uncertainties in future allocation. A large number of experiments under both light and peak load conditions have been carried out to provide realistic results. Results indicate that voltage stability is positively correlated with penetration of DG, but large induction type DG may lower the voltage stability margin.